Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Sort descending Institution(s) Investigator(s) Location(s) Year Awarded
1DP2NS130454-01
Using Mouse Pain Scales to Discover Unusual Pain Sensitivity and New Pain Targets Cross-Cutting Research Training the Next Generation of Researchers in HEAL NINDS COLUMBIA UNIV NEW YORK MORNINGSIDE ABDUS-SABOOR, ISHMAIL JOHN New York, NY 2022
NOFO Title: Emergency Awards: HEAL Initiative- New Innovator Award (DP2 Clinical Trial Not Allowed)
NOFO Number: RFA-TR-22-013
Summary:

Acute and chronic pain vary widely across patients, due in large part to genetic differences between individuals. The same variation occurs in preclinical animal models with diverse genetic backgrounds. The development of automated mouse “pain scales” using high-speed videography, machine learning, and custom software allows pain to be assessed in a quantitative manner in nonverbal animals. This technology will be used to identify genetically different mice with high or low pain sensitivity, which will facilitate the development of new therapeutic strategies to treat pain and reduce reliance on opioids.

3R01NS118563-01A1S1
Diversity Supplement to FKBP51 Antagonism to Prevent Chronic Pain: Optimizing Efficacy & Evaluating Safety and Mechanisms Cross-Cutting Research Training the Next Generation of Researchers in HEAL NINDS UNIV OF NORTH CAROLINA CHAPEL HILL LINNSTAEDT, SARAH; MCLEAN, SAMUEL A Chapel Hill, NC 2022
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107; PA-21-071
Summary:

Current evidence indicates that chronic pain after a traumatic injury is influenced by the body’s response to stress. This project will conduct a comprehensive analysis of gene expression after traumatic stress exposure in a range of animal models in various body regions including the brain (amygdala, hippocampus, hypothalamus) and spinal cord, as well as nerves and immune cells throughout the body. These studies will be conducted in animals with no stress exposure as well as in animals treated with a molecule (FKBP51) known to block the stress response. This research will enhance understanding of how FKBP51 and post-injury stress affect pain processes.

3U24NS113844-04S1
Statistical Methods to Jointly Model Multiple Pain Outcome Measures Cross-Cutting Research Training the Next Generation of Researchers in HEAL NINDS NEW YORK UNIVERSITY SCHOOL OF MEDICINE TROXEL, ANDREA B; PETKOVA, EVA New York, NY 2022
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107; PA-21-071
Summary:

The Early Phase Pain Investigation Clinical Network (EPPIC-Net) conducts comprehensive analyses of observable traits (deep phenotyping) and aims to identify molecular and physiological signatures to help characterize specific pain conditions. To achieve these goals, researchers collect complex data using technologies such as magnetic resonance imaging of the brain, actigraphy, and electroencephalography. There is a need to train researchers to be able to extract key information from high-powered computing resources now widely available.  This research will complement the goals of EPPIC-Net by enhancing development of novel statistical methods to analyze complex data generated by EPPIC-Net pain studies.

3R61NS127285-01S1
Investigating the Contributions of Voltage Gated Sodium Channels to Oxaliplatin Induced Neuropathy Cross-Cutting Research Training the Next Generation of Researchers in HEAL NINDS UNIVERSITY OF CALIFORNIA AT DAVIS YAROV-YAROVOY, VLADIMIR M Davis, CA 2022
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107; PA-21-071
Summary:

Many molecular gates known as ion channels control the flow of electrical signals to sensory neurons and are thus key mechanisms and targets for understanding and interrupting pain signals. Recent breakthroughs in structural and computational biology shave illuminated specific molecular shapes of ion channels, which permits the improved design and refinement of small, stable protein-like molecules (peptide antigens). These peptides can stimulate an immune response that can then be targeted with a bioengineered antibody to match the peptide antigen. This project will test bioengineered antibodies in a rat model of chemotherapy-induced peripheral neuropathy within a region of the rat spinal cord that transmits signals to and from the brain.

1K99NS134965-01
Lymphocyte Antigen 6 (Ly6) Proteins: New Players in Chronic Pain Cross-Cutting Research Training the Next Generation of Researchers in HEAL NINDS NEW YORK UNIVERSITY GOMEZ, KIMBERLY New York, NY 2023
NOFO Title: HEAL Initiative Advanced Postdoctoral-to-Independent Career Transition Award in PAIN and SUD Research to Promote Diversity (K99/R00 Independent Clinical Trial Not Allowed)
NOFO Number: RFA-NS-22-025
Summary:

Neuropathic pain—a debilitating form of chronic pain affecting millions of people—responds poorly to current analgesic treatment approaches. By better understanding the cellular mechanisms and compounds involved in neuropathic pain, researchers will be able to develop more targeted therapeutic approaches. This project will investigate the role that two proteins—Ly6e and Lynx1—play in various processes involved in the development of neuropathic pain, such as the activity of pain-triggering sensory neurons, interactions between neurons and immune cells, and the activity of an ion channel that has been implicated in the generation of pain signals.

1K12NS130673-01
University of Michigan (UM) HEAL Initiative National K12 Clinical Pain Career Development Program (UM-HCPDP) Cross-Cutting Research Training the Next Generation of Researchers in HEAL NINDS UNIVERSITY OF MICHIGAN WILLIAMS, DAVID A (contact); CLAUW, DANIEL J; HARTE, STEVEN EDWARD Ann Arbor, MI 2022
NOFO Title: HEAL Initiative: National K12 Clinical Pain Career Development Program (K12 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-22-045
Summary:

The Interagency Pain Research Coordinating Committee has reported that early-stage investigators are leaving the clinical pain research workforce for other fields. In addition, pain clinician researchers at the senior/mentor level are also exiting the field. This project will create a national training center for early-career clinicians and scientists interested in pursuing and sustaining independent careers in clinical pain research. Research will focus on rigorous scientific methods and procedures in pain research as well as the importance of stakeholder engagement.

1R24NS132283-01
PURPOSE: Positively Uniting Researchers of Pain to Opine, Synthesize, and Engage Cross-Cutting Research Training the Next Generation of Researchers in HEAL NINDS NEUROVATIONS COVERSTONE, JACOB SUTTON Napa, CA 2022
NOFO Title: Emergency Awards: HEAL Initiative: Coordinating Center for National Pain Scientists Career Development (R24 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-22-060
Summary:

The Interagency Pain Research Coordinating Committee has identified a need for organized opportunities for early-stage pain researchers to meet and learn from more experienced pain researchers and mentors – who are exiting the field at a faster rate than they are being replaced. This project will create a coordinating center for early-stage pain researchers, with an online networking platform to encourage interactions and collaboration among these scientists. The research will also develop a training curriculum and make it accessible to NIH funded, early-stage pain scientists.