Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Sort descending Year Awarded
1R61DA059880-01
Evaluation of a Peer Recovery Support Program Adapted to Target Retention in Clinic-Based Medication for Opioid Use Disorder Treatment Translation of Research to Practice for the Treatment of Opioid Addiction Optimizing the Quality, Reach, and Impact of Addiction Services NIDA GEISINGER CLINIC POULSEN, MELISSA (contact); ZAJAC, KRISTYN Danville, PA 2023
NOFO Title: HEAL Initiative: Translating Research to Practice to End the Overdose Crisis (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-DA-23-053
Summary:

Medications for opioid use disorder (OUD) are safe and effective. However, many people do not take them long enough to achieve sustained recovery, putting them at risk of overdose. Peer recovery support services—which are delivered by trained individuals with lived experience of addiction and recovery—may help people with OUD initiate and stay in medication treatment. This project will adapt peer recovery support services for use in outpatient substance use treatment settings and test their implementation and effectiveness in helping people with OUD achieve long-term recovery. If successful, the program could be implemented in a variety of outpatient treatment programs, including in underserved rural areas.

3R01DA044015-02S1
SUPPLEMENTAL APPLICATION FOR CLINICAL AND GENETIC RISK PROFILE OF OPIOID USE DISORDER New Strategies to Prevent and Treat Opioid Addiction NIDA Geisinger Clinic TROIANI, VANESSA; BERRETTINI, WADE H; ROBISHAW, JANET D DANVILLE, PA 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

This project is focused on identifying the clinical, genetic, and neural characteristics that convey risk for prescription opioid addiction. We will leverage the central biorepository and electronic health record (EHR) database of the Geisinger Health System to conduct large-scale genomics research and phenotype development. Through a collaboration with Regeneron Pharmaceuticals, the Geisinger biobank currently contains DNA samples on about 110,000 participants and includes both Illumina OmniExpressExome genotyping and whole exome sequence data, including common and rare variants, from over 60,000 of these subjects. This discovery cohort contains thousands of chronic musculoskeletal pain patients who have been taking greater than 120 mg equivalents of morphine for more than three months. Using EHR and self-report tools to develop a case definition and quantitative scoring, we will derive a clinical/genetic profile of prescription opioid addiction. This profile will be enhanced via integration of neuroimaging data.

3R61NS127285-01S1
Investigating the Contributions of Voltage Gated Sodium Channels to Oxaliplatin Induced Neuropathy Cross-Cutting Research Training the Next Generation of Researchers in HEAL NINDS UNIVERSITY OF CALIFORNIA AT DAVIS YAROV-YAROVOY, VLADIMIR M Davis, CA 2022
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107; PA-21-071
Summary:

Many molecular gates known as ion channels control the flow of electrical signals to sensory neurons and are thus key mechanisms and targets for understanding and interrupting pain signals. Recent breakthroughs in structural and computational biology shave illuminated specific molecular shapes of ion channels, which permits the improved design and refinement of small, stable protein-like molecules (peptide antigens). These peptides can stimulate an immune response that can then be targeted with a bioengineered antibody to match the peptide antigen. This project will test bioengineered antibodies in a rat model of chemotherapy-induced peripheral neuropathy within a region of the rat spinal cord that transmits signals to and from the brain.

1UG3NS114956-01
Optimization of non-addictive biologics to target sodium channels involved in pain signaling Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS UNIVERSITY OF CALIFORNIA AT DAVIS YAROV-YAROVOY, VLADIMIR M Davis, CA 2019
NOFO Title: Optimization of Non-addictive Therapies [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-19-010
Summary:

Pain signals originate predominantly in a subset of peripheral sensory neurons that harbor a distinct subset of voltage-gated sodium (NaV) channels; however, current NaV channel blockers, such as local anesthetics, are non-selective and also block NaV channels vital for function of the heart, muscle, and central nervous system. Genetic studies have identified human NaV1.7, NaV1.8, and NaV1.9 channel subtypes as key players in pain signaling and as major contributors to action potential generation in peripheral neurons. ProTx-II is a highly potent and moderately selective peptide toxin that inhibits human NaV1.7 activation. This study will optimize ProTx-II selectivity, potency, and stability by exploiting the new structures of ProTx-II—human NaV1.7 channel complexes, advances in rational peptide optimization, and rigorous potency and efficacy screens to generate high-affinity, selective inhibitors of human NaV1.7, NaV1.8, and NaV1.9 channels that can define a new class of biologics to treat pain.

1UG3DA048767-01
Development of a Soluble Epoxide Hydrolase Inhibitor to Spare or Replace Opioid Analgesics Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Eicosis, LLC Hammock, Bruce Davis, CA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

EicOsis is developing a first-in-class analgesic with efficacy against neuropathic pain that will reduce or replace the need for opioids and thus potentially prevent opioid use disorder (OUD). The target of the small molecule inhibitor EC5026 is the soluble epoxide hydrolase, a master regulatory enzyme that modulates the activity of endogenous bioactive lipids. The study will reach the next steps in clinical human clinical trials with EC5026 through additional preclinical studies to expand the efficacy into models of chronic pain conditions. Additionally, detailed pharmacokinetic, metabolism, and distribution studies are proposed that will provide the required information to optimize drug formulation and for advanced clinical trials examining efficacy in humans. EicOsis is meeting current development goals, and EC5026 is well positioned to meet the urgent need of reducing opioid use.

1R61DA059027-01
A Multi-Team System Implementation Strategy to Improve Buprenorphine Adherence for Patients who Initiate Treatment in the Emergency Department Translation of Research to Practice for the Treatment of Opioid Addiction Optimizing the Quality, Reach, and Impact of Addiction Services NIDA UNIVERSITY OF CALIFORNIA AT DAVIS HENRY, STEPHEN G (contact); MOULIN, AIMEE; TU, SHIN-PING Davis, CA 2023
NOFO Title: HEAL Initiative: Translating Research to Practice to End the Overdose Crisis (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-DA-23-053
Summary:

There is an urgent need to identify and rapidly apply strategies to expand treatment for opioid use disorder, particularly among low-income patients. This project will develop and test a novel implementation strategy that uses ongoing community partnerships designed to improve care coordination for patients who start buprenorphine treatment for opioid use disorder in the emergency department and are then referred to primary care for ongoing treatment.

1R21DA056637-01
KCa2 Channel Activators for Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA University of California, Davis WULFF, HEIKE Davis, CA 2022
NOFO Title: HEAL Initiative: Novel Targets for Opioid Use Disorders and Opioid Overdose (R21 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-22-032
Summary:

Safe and effective options are urgently needed to prevent and treat opioid use disorder and polysubstance use disorders. Previous research in humans and animals suggests that activating the calcium-activated potassium channel KCa2.2 is a promising therapeutic approach for treating substance use disorders and associated health conditions. This project will perform a virtual high-throughput screen using novel machine learning approaches to discover new molecules that interact with the KCa2.2 channel. The newly discovered molecules help develop novel drugs for the treatment of opioid use disorder and associated health conditions.

1R43CA233371-01A1
Inhibiting soluble epoxide hydrolase as a treatment for chemotherapy inducedperipheral neuropathic pain Cross-Cutting Research Small Business Programs NCI EICOSIS, LLC BUCKPITT, ALAN R Davis, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

 Investigating the broader efficacy of sEH inhibition and specifically our IND candidate, EC5026, has indicated that it is efficacious against chemotherapy induced peripheral neuropathy (CIPN). This painful neuropathy develops from chemotherapy treatment, is notoriously difficult to treat, and can lead to discontinuation of life-prolonging cancer treatments. Thus, new therapeutic approaches are urgently needed. The research team will investigate if EC5026 has potential drug-drug interaction with approved chemotherapeutics or alters immune cells function, and assess the effects of sEHI on the lipid metabolome and probe for changes in endoplasmic reticulum stress and axonal outgrowth in neurons. The team proposes to more fully characterize the analgesic potential of our compound and investigate on and off target actions in CIPN models and model systems relevant to cancer therapy.

1R61AT012187-01
Total-Body PET for Assessing Myofascial Pain Clinical Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NCCIH UNIVERSITY OF CALIFORNIA AT DAVIS CHAUDHARI, ABHIJIT J (contact); NARDO, LORENZO Davis, CA 2022
NOFO Title: HEAL Initiative: Developing Quantitative Imaging and Other Relevant Biomarkers of Myofascial Tissues for Clinical Pain Management
NOFO Number: RFA-AT-22-003
Summary:

Myofascial pain syndrome is a prevalent and debilitating condition and can aggravate other conditions such as sickle cell disease. This project will use total body imaging using positron emission tomography/computed tomography (TB-PET/CT) to identify and monitor this pain syndrome and potential treatments over time. The research will use TB-PET/CT to assess myofascial tissue effects of chronic low back pain and sickle cell disease pain. The first phase of the project will assess health changes observed by TB-PET/CT imaging in painful and non-painful myofascial tissues compared to healthy myofascial tissue. The second phase of the research will be a randomized, controlled longitudinal interventional study to evaluate the effectiveness of acupuncture on myofascial pain syndrome, using TB-PET/CT imaging to assess changes.

1R61NS127285-01
Development of Therapeutic Antibodies to Target Sodium Channels Involved in Pain Signaling Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS University of California, Davis YAROV-YAROVOY, VLADIMIR M (contact); TRIMMER, JAMES S Davis, CA 2022
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development [Small Molecules and Biologics] (R61 Clinical Trial Not Allowed)
NOFO Number: NS21-029
Summary:

Voltage-gated sodium channels such as Nav1.7, Nav1.8, and Nav1.9 transmit pain signals in nerve fibers and are molecular targets for pain therapy. While Nav channels have been validated as pharmacological targets for the treatment of pain, available therapies are limited due to incomplete efficacy and significant side effects. Taking advantage of recent advances in structural biology and computational-based protein design, this project aims to develop antibodies to attach to Nav channels and freeze them in an inactive state. These antibodies can then be further developed as novel treatments for chronic pain.

1R01DA056660-01
Target Specificity of Tabernanthalog Treatment in Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA University of Colorado, Denver PETERS, JAMIE (contact); HEINSBROEK, JASPER Denver, Colorado 2022
NOFO Title: HEAL Initiative: Novel Targets for Opioid Use Disorders and Opioid Overdose (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-22-031
Summary:

Currently available treatments for opioid use disorder (OUD) are insufficient for many patients. Novel compounds that can promote alterations in brain connections (i.e., neural plasticity) possess enormous potential for improving substance use disorder (SUD) treatments. Psychedelic compounds induce neural plasticity and can elicit long-lasting, beneficial impacts on a wide variety of SUDs. However, these compounds have significant side effects, including hallucinations and cardiotoxicity. Researchers have developed a novel, synthetic derivative of the psychedelic ibogaine, called tabernanthalog, that does not have these side effects. This compound has demonstrated both short- and long-term therapeutic effects in a preclinical model of OUD. This research study will determine the molecular and neural mechanisms through which tabernanthalog affects opioid seeking. It will also evaluate whether the effects are specific to opioids and do not alter response to natural rewards and will examine the efficacy of tabernanthalog in a preclinical model of comorbid opioid and alcohol use disorder.

1U01HL150551-01
Dual-orexin antagonism as a mechanism for improving sleep and drug abstinence in opioid use disorder New Strategies to Prevent and Treat Opioid Addiction Sleep Dysfunction as a Core Feature of Opioid Use Disorder and Recovery NHLBI Wayne State University GREENWALD, MARK K (contact); ROEHRS, TIMOTHY A Detroit, MI 2019
NOFO Title: HEAL Initiative: Sleep and Circadian-Dependent Mechanisms Contributing to Opiate Use Disorder (OUD) and Response to Medication Assisted Treatment (MAT) (U01 Clinical Trial Optional)
NOFO Number: RFA-HL-19-029
Summary:

FDA-approved medications for treating opioid use disorder are effective, but there is a significant unmet need for alternatives, especially relapse prevention. NIDA and the FDA have encouraged investigators to expand the range of therapeutic outcomes, beyond measurement of abstinence. Insomnia is a clinically significant, but understudied, correlate/predictor of relapse to substance use. Yet most medications for treating insomnia have limited efficacy and can produce side effects. The orexin (OX) system plays a key role in sleep and substance use, offering a promising avenue for study. This project will address whether OX-1/2 antagonism is a mechanism that can directly improve outpatient opioid abstinence, or whether OX antagonism corrects sleep deficiencies and indirectly improves opioid abstinence. Specific aims are to determine whether nightly treatment with the OX-1/2 antagonist suvorexant, relative to placebo, 1) increases outpatient opioid abstinence and 2) improves sleep efficiency on the residential detoxification unit. The study will also determine 3) whether improved sleep efficiency predicts greater opioid abstinence (regardless of group assignment).

1R21DA047662-01
Human laboratory model to screen drugs with opioid analgesic-sparing effects: cannabidiol/morphine combinations Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA WAYNE STATE UNIVERSITY Lundahl, Leslie H Detroit, MI 2019
NOFO Title: NIH Exploratory/Developmental Research Grant Program (Parent R21 Clinical Trial Required)
NOFO Number: PA-18-344
Summary:

Chronic pain is a significant public health problem associated with tremendous personal and economic burden. First-line treatment consists of opioid medications, but despite only moderate efficacy and unpleasant side effects, rates of opioid prescriptions have quadrupled over the past 15 years, and this has contributed to high rates of misuse, overdose, and mortality. Clearly, alternative, or non-opioid strategies for treating pain are needed. In this context, “opioid-sparing” medications refer to compounds that can be combined with and enhance the analgesic effects of lower-dose opioids without increasing the rewarding properties of either drug. There is preclinical evidence suggesting that cannabidiol (CBD) may have the potential to function as “opioid-sparing” medications, but its ability to alter opioid-mediated analgesia in humans has yet to be determined. This proposal will fill this gap by conducting a double-blind, placebo-controlled, within-subject randomized crossover study of the effects of CBD and morphine co-administration on pain sensitivity and subjective reinforcement on 28 healthy males and females. This is the first known study to investigate the ability of CBD to alter morphine’s analgesic effects in humans. If successful, the model will have a lasting impact on our ability to develop and test medications that reduce our reliance on chronic use of opioid medications for pain relief.

3U01MH114087-02S2
EVALUATING THE IMPACT OF CHANGES IN OPIOID PRESCRIBING ACROSS HEALTH SYSTEMS IMPLEMENTING ZERO SUICIDE New Strategies to Prevent and Treat Opioid Addiction Sleep Dysfunction as a Core Feature of Opioid Use Disorder and Recovery NIMH Henry Ford Health System AHMEDANI, BRIAN KENNETH; SIMON, GREGORY E. DETROIT, MI 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

This supplement supports the goals of the current award, “An Evaluation of the National Zero Suicide Model Across Learning Healthcare Systems” (U01MH114087). Safety planning is a highly recommended practice within the Zero Suicide framework, but little is known about the effectiveness of the individual elements that can make up a safety plan, such as lethal means assessment, identification of supportive contacts, coping skills, warning signs, and sources of distraction. All of the documentation lives in text-based clinical narratives. This supplement will support development of new metrics using natural language processing to determine baseline rates, from which we can quantify the change in safety planning and lethal means assessment practice longitudinally after implementation of new safety planning templates using our Zero Suicide main award.

3U01MH114087-02S1
Patient perspectives on clinical approaches to prevent opioid related suicide attempts New Strategies to Prevent and Treat Opioid Addiction Optimizing Care for People with Opioid Use Disorder and Mental Health Conditions NIMH Henry Ford Health System AHMEDANI, BRIAN KENNETH Detroit, MI 2020
NOFO Title: Notice of Special Interest: HEAL Supplements to Improve the Treatment and Management of Common Co-occurring Conditions and Suicide Risk in People Affected by the Opioid Crisis
NOFO Number: NOT-MH-20-025
Summary:

This study will evaluate the implementation of the Zero Suicide framework across six health systems serving over nine million people in collaboration with the Mental Health Research Network. The project will incorporate the voice of the patient and provider stakeholders as part of the implementation of the Zero Suicide framework in three health settings from the NIMH-funded parent award as well as the Southcentral Foundation which is an Alaska Native-owned, nonprofit health care organization serving nearly 65,000 American Indian/Alaskan Native people living in and around Anchorage, Alaska. The team will first systematically engage patients, providers, national consumer advocacy groups, and MHRN scientists in formulating research questions to address the prevention of opioid-related overdoses in people with Opioid Use Disorders (OUD) or people without diagnosed OUD who are using opioids for pain management. Next, the team will utilize semi-structured interviews to determine how people with OUD or people without diagnosed OUD who are using opioids for pain management are experiencing the implementation of the Zero Suicide framework in four diverse health systems. Experiences will be recorded using 80 semi-structured phone interviews in a diverse sample of patients who have survived an opioid-related overdose (50% intentional; 50% unintentional), as well as 20 Addiction Medicine, Primary Care, and/or Specialty Pain Medicine providers.

1R44GM140795-01A1
Non-Opioid Post-Operative Pain Management Using Bupivacaine-loaded Poly(ester urea) Mesh Cross-Cutting Research Small Business Programs NIGMS 21MEDTECH, LLC ALFARO, ARTHUR Durham, NC 2021
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

There is an urgent need for non-opioid post-operative pain management solutions.  This research is developing a naturally absorbable polymer film that can release controlled amounts of the non-opioid analgesic bupivacaine – aiming to manage pain for several days following surgery. Project objectives are to optimize the timing of drug release, develop manufacturing standards, determine effective dosage for preserving motor function, and determine safety and efficacy in mouse models of neuropathic pain. Continued development of this film delivery system may lead to a new, non-opioid therapeutic strategy that could be combined with local anesthesia for up to 4 days after surgery to reduce or potentially eliminate opioids use.

5R01DE027454-02
Modeling temporomandibular joint disorders pain: role of transient receptor potential ion channels Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDCR Duke University Chen, Yong Durham, NC 2019
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

Masticatory and spontaneous pain associated with temporomandibular joint disorders (TMJD) is a significant contributor to orofacial pain, and current treatments for TMJD pain are unsatisfactory. Pain-related transient receptor potential (TRP) channels, expressed by trigeminal ganglion (TG) sensory neurons, have been implicated in both acute and chronic pain and represent possible targets for anti-pain strategies. Using bite force metrics, we found TMJ inflammation-induced masticatory pain to be significantly, but not fully, reversed in Trpv4 knockout mice, suggesting the residual pain might be mediated by other pain-TRPs. Our gene expression studies demonstrated that TRPV1 and TRPA1 were up-regulated in the TG in response to TMJ inflammation in a Trpv4-dependent manner. We hypothesize that TRPV1 and TRPA1, like TRPV4, contribute to TMJ pain. Our specific aims will examine the contribution of TRPV1, TRPV4, and TRPA1 to pathogenesis of TMJD pathologic pain including assessment of the role of neurogenic inflammation.

1R01DE029342-01
Identification and Validation of a Novel Central Analgesia Circuit Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDCR DUKE UNIVERSITY WANG, FAN Durham, NC 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

This project focuses on identifying and validating a new central analgesic circuit in the brain, based on a highly innovative hypothesis that the strong analgesic effects of general anesthesia (GA) are in part carried out by GA-mediated activation of the endogenous analgesic circuits. Preliminary discovery studies found that a subset of GABAergic neurons located in the central amygdala (CeA) become strongly activated and express high levels of the immediate early gene Fos under GA (hereafter referred to as CeAGA neurons). Furthermore, activation of these neurons exert profound pain-suppressing effects in an acute pain model and a chronic orofacial neuropathic pain model in mice. Based on these exciting preliminary findings, this project will identify and validate CeAGA neurons’ analgesic functions utilizing multiple mouse pain models. Identification of these shared common pathways that need to be suppressed by specific subtypes of CeAGA analgesic neurons will be highly critical for developing precise CeAGA-targeted therapies to treat chronic pain.

3U24TR001608-04S1
TIN Supplement Clinical Research in Pain Management Pain Management Effectiveness Research Network (ERN) NCATS Duke University Benjamin, Daniel K. Durham, NC 2019
NOFO Title: CTSA Network - Trial Innovation Centers (TICs) (U24)
NOFO Number: RFA-TR-15-002
3U2COD023375-07S1
ACT-NOW Data Sustainability - ECHO Administrative Supplement Cross-Cutting Research Leveraging Existing and Real-Time Opioid and Pain Management Data OD/ECHO DUKE UNIVERSITY SMITH, PHILLIP BRIAN; NEWBY, LAURA KRISTIN Durham, NC 2022
NOFO Title: Notice of Special Interest (NOSI): Availability of Administrative Supplements for Helping to End Addiction Long-term (HEAL) Initiative awardees to make data Findable, Accessible, Interoperable, and Reusable (FAIR) through the HEAL Data Ecosystem
NOFO Number: NOT-OD-22-110
Summary:

This research provides support to strengthen data management, data sharing, and data readiness efforts within the HEAL Initiative. This support further fosters collaboration among HEAL awardees and enables maximal data discoverability, interoperability, and reuse by aligning with the FAIR (Findable, Accessible, Interoperable, and Reusable) principles. It also provides an opportunity for existing HEAL Initiative award recipients to increase data “FAIR”-ness, participate in coordinated HEAL Initiative activities to build community around data sharing, and foster sustainability of HEAL Initiative digital assets.

1R43NS119087-01A1
Evaluating the Blood-Brain Barrier Bioavailability and in vivo Efficacy Potential of a Novel TAK1 Inhibitor Targeting Chronic Pain Cross-Cutting Research Small Business Programs NINDS EYDIS BIO, INC. SCARNEO, SCOTT (contact); HAYSTEAD, TIMOTHY A Durham, NC 2021
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: NS-20-011
Summary:

Over-the-counter medicines such as non-steroidal anti-inflammatory drugs are ineffective for treating severe chronic pain and may have serious side effects from continued use, which limits treatment options. A kinase (an enzyme whose activity targets a specific molecule) called TAK1 is involved in the chronic pain process. This research will develop a molecule previously shown to be effective in a model of inflammatory pain that also inhibits TAK1. A main goal will be to determine if this inhibitor (takinib analog HS-276) can cross the blood-brain barrier and, if successful, pursue FDA  Investigative New Drug-enabling safety studies leading to a Phase I clinical trial and a potential new chronic pain treatment.

1RF1NS131812-01A1
Targeting Checkpoint Inhibitors for Pain Control Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS DUKE UNIVERSITY JI, RU-RONG Durham, NC 2023
NOFO Title: HEAL Initiative: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-22-034
Summary:

Immune checkpoint proteins regulate the immune system to prevent it from indiscriminately attacking cells. Some cancers activate these immune checkpoints to avoid attack, and drugs that target certain immune checkpoints are approved for cancer treatment. The same pathway may also be involved in pain because immune checkpoint proteins, such as programmed death 1 (PD-1) and the molecule that binds to it (programmed death ligand 1 [PD-L1]), also are found in sensory neurons, microglia, and macrophages. This project will investigate PD-1/PD-L1 in different cell populations to determine their contribution to pain and to the effects of opioids such as morphine. This knowledge may help identify new drugs for pain management that modify immune checkpoint activity.

3U24NS114416-01S2
Pre-Trial Implementation Study for Ketamine in Sickle Cell Disease Cross-Cutting Research Training the Next Generation of Researchers in HEAL NINDS Duke University LIMKAKENG, ALEXANDER TAN Durham, NC 2022
NOFO Title: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp Clinical Trial Not Allowed)
NOFO Number: PA21-071
Summary:

There are significant and persistent gaps in knowledge about effective pain management for acute and chronic sickle cell pain. This is an area of relevant interest for the NIH HEAL Initiative's Early Phase Pain Investigation Clinical Network (EPPIC-Net). In order to provide guidance for hospital-based administration of the medication ketamine, this project will conduct a cross-sectional survey study of healthcare professionals within EPPIC-Net who provide care for people with sickle cell disease. This information can be used to design a clinical protocol for a multisite, randomized clinical trial of sub-anesthetic (low) doses of ketamine for challenging vaso-occlusive episodes (“pain crises”) in people with sickle cell disease.

1UH3NS115647-01A1
A Double-Blind, Randomized, Controlled Trial of Epidural Conus Medullaris Stimulation to Alleviate Pain and Augment Rehabilitation in Patients with Subacute Thoracic Spinal Cord Injury (SCI) Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS DUKE UNIVERSITY LAD, SHIVANAND P Durham, NC 2020
NOFO Title: HEAL Initiative: Clinical Devices to Treat Pain (UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-19-018
Summary:

Pain is a major problem for spinal cord injury (SCI) patients that tends to persist and even worsen with time. No treatments are currently available to consistently relieve pain in SCI patients. This study will investigate the feasibility of Epidural Electrical Stimulation (EES) using the Abbott Proclaim? SCS system with two electrodes to treat neuropathic pain in patients with thoracic spinal cord injury. In this double-blind, prospective, randomized clinical trial, patients with subacute, traumatic, complete thoracic SCIs with American Spinal Injury Association (ASIA) Impairment Scale A will be randomized to receive either ?EES on? (treatment intervention) or ?EES off? (control intervention) of the target regions for pain control (lead overlying the spinal cord anatomy corresponding with their pain distribution) and neurorestoration (lead overlying the conus medullaris) as an adjunct to physical therapy. This study will help determine whether EES can help patients with SCI neuropathic pain and have more widespread clinical applicability.

5U2COD023375-04
MFMU Network Administrative Supplement Enhanced Outcomes for Infants and Children Exposed to Opioids Advancing Clinical Trials in Neonatal Opioid Withdrawal (ACT NOW) OD Duke University Smith, Brian Durham, NC 2019
NOFO Title: Environmental Influences on Child Health Outcomes (ECHO) Coordinating Center (U2C)
NOFO Number: RFA-OD-16-006