Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Year Awarded Sort descending
1UG3DA050316-01
Development of SBI-553, an allosteric modulator of NTR1, for the treatment of substance use disorders Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Sanford Burnham Prebys Medical Discovery Institute Pinkerton, Anthony La Jolla, CA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Addiction to opioids is related to the physiology of the brain’s dopamine-based reward system. As a modulator of dopaminergic systems, the neurotensin 1 receptor (NTR1) should be a molecular target for treating addictive disorders; however, few non-peptide brain penetrant neurotensin modulators have been identified, and orthosteric NTR1 ligands display side effects that have limited their clinical development. This group discovered a series of brain-penetrant NTR1 modulators, including a lead compound SBI-553, with a unique mechanism of action at NTR1. SBI-553 is an orally available, brain penetrant ?-arrestin biased allosteric modulator of NTR1, which shows efficacy in a range of addiction models and circumvents the clinically limiting side effects. While potentially high risk, the activity of SBI-553 has been validated in vitro and in vivo, and the initial safety profiling indicates no issues that would preclude further development. This study will develop SBI-553 as a treatment for opioid use disorder.

1UG3DA050311-01
Mu Opioid Receptor Modulator Development to Treat Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Virginia Commonwealth University Zhang, Yan Richmond, VA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

There is a need to develop a mu-opioid receptor (MOR) treatment with enhanced therapeutic effects and reduced undesirable effects. Recently, several highly selective and potent MOR modulators have been identified as novel leads for opioid use disorder treatment. They all showed more promising pharmacological profiles compared to other known drugs in this category. The current proposal will focus on further development of these leads for preclinical IND-enabling studies and dynamic drug discovery and development pipeline construction. This project plans to further validate therapeutic profiles of the current leads with self-administration and pharmacokinetic studies and expand the small-molecule library to build a dynamic drug discovery and development pipeline. Preclinical IND-enabling studies on the identified lead(s) will be conducted, and in vivo pharmacokinetics and pharmacodynamics profiles of the new hits will be compared with current leads to define the next generation of lead compound(s).

1R01DA048417-01
A novel opioid receptor antagonist for treating abuse and overdose Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA UNIVERSITY OF TEXAS HLTH SCIENCE CENTER France, Charles P San Antonio, TX 2019
NOFO Title: NIH Research Project Grant (Parent R01 Clinical Trial Not Allowed)
NOFO Number: PA-18-484
Summary:

Deaths from opioid overdose continue to rise; from 2015 to 2016, there was a 28 percent increase in the number of fatal overdoses. Currently available pharmacotherapies include MOR agonists (e.g., buprenorphine) and antagonists (e.g., naloxone), all of which suffer from specific and clear limitations. To address the main deficits in these treatments, the researchers will develop and optimize medications with longer duration of action that prevent and reverse the effects of opioids in a manner that is not surmounted by increasing doses of agonist. Their pilot studies in monkeys show that the pseudo irreversible MOR selective antagonist methocinnamox (MCAM) decreases heroin but not cocaine self-administration, decreases choice for remifentanil in a food/drug choice procedure, and reverses—as well as protects against—respiratory depression by heroin, with a single injection being effective for a week or longer. Bringing a medication like this to marketable fruition could significantly improve the treatment of OUD and save lives by providing insurmountable extended protection after rescue from overdose, including from ultra-potent fentanyl analogs.

1UG3DA047700-01
Biased Mu-Opioid Receptor Analgesics to Prevent Overdose and Opioid Use Disorders Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA MEBIAS DISCOVERY, LLC KUO, LAWRENCE C Philadelphia, PA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

The adverse effects of morphine and other mu-opioid receptor (MOR) agonists are linked to the ?-arrestin pathway, while analgesia is tied to the G-protein pathway. Pathway specific or “biased” drug development can target G-protein specific agonists that avoid the negative consequences of ?-arrestin signaling activation and produce analgesia. Highly “biased” MOR agonists have promise as effective analgesics but devoid of opioid-induced adverse effects. Preclinical studies compared two compounds, MEB-1166 and MEB-1170, against Oliceridine and morphine. Both compounds displayed no respiratory depression, even at high doses, while morphine and Oliceridine significantly reduced respiratory function. In contrast to morphine, neither MEB-1166 nor MEB-1170 produced conditioned place preference, suggesting an absence of abuse liability. This study will characterize the pharmaceutical and pharmacological profiles and perform liability studies for these compounds.

1UG3DA048386-01
Vaccines for fentanyl and its derivatives: A strategy to reduce illicit use and overdose Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA UNIVERSITY OF MINNESOTA PRAVETONI, MARCO Minneapolis, MN 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

The United States has seen dramatic increases in fatal overdoses due to heroin, counterfeit prescription drugs, and cocaine adulterated with fentanyl or fentanyl-like analogs. Current medications may not be sufficient to address the opioid overdose epidemic. As a complementary strategy, the researchers plan to develop vaccines against fentanyl and fentanyl-like compounds to reduce their abuse liability and the growing incidence of fatal overdoses. This research team has already developed vaccines against heroin and oxycodone that stimulate the production of antibodies effective in reducing opioid distribution to the brain, opioid-induced behaviors, and opioid-induced respiratory depression and have identified a promising fentanyl vaccine candidate cued up for optimization. Successful completion of an anti-fentanyl vaccine development project could offer a long-lasting, safe, and cost-effective intervention complementary to medication-assisted treatment (MAT) and may reduce overdoses in opioid users as well as protect people in professions (e.g., law enforcement, airport security, postal workers) at risk of accidental exposure to fentanyl and fentanyl analogs.

1UG3DA050325-01
Use of a GLP-1 Agonist to Treat Opioid Use Disorder in Rats and Man Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Pennsylvania State University Hershey Medical Center Grigson, Patricia Hershey, PA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

High relapse rates among people with opioid use disorder (OUD) indicate that addiction involves appetitive pathways. Peripheral stimulation of the glucagon-like peptide-1 receptor (GLP-1R) “satiety” pathway could reduce heroin seeking and taking. Pretreatment with a GLP-1R agonist reduces heroin taking, seeking, and drug-induced reinstatement in rats. This project tests whether GLP-1R agonists can reduce relapse in humans with OUD. A pilot study will be conducted to determine whether once-daily treatment with the shorter acting GLP-1R agonist, liraglutide, can safely and effectively reduce cravings among OUD patients. Animal models will be used to test the efficacy and safety of a longer-acting GLP-1R agonist, semaglutide, and then a clinical trial will be conducted to test whether semaglutide will reduce relapse and use in animal models. If successful, the study will show that treatment with GLP-1R agonists can safely and effectively reduce opioid craving, seeking, and relapse.

1UG3DA047708-01
Development of a safe and effective novel mechanism analgesic to treat moderate to severe pain with low or absent abuse liability. Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA ARTYS BIOTECH, LLC LARK, MICHAEL WILLIAM; ZADINA, JAMES E Plymouth Meeting, PA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Chronic pain affects an estimated 100 million Americans, or one third of the U.S. population, and it is the primary reason Americans are on disability. Although many treatments are available for pain, the most potent class of analgesics relies on opioid analogs, whose limitations and well-known adverse effects have contributed to the present opioid crisis. New pharmacotherapies for pain management are sorely needed. MTX1604, a synthetic endomorphin analog, has emerged as a highly effective analgesic that exhibits reduced reward potential and respiratory suppression, and a robust duration of efficacy in a variety of validated animal models of acute, neuropathic, inflammatory, post-operative, and visceral pain. This project will generate additional preclinical characterization data of MTX1604 and advance clinical development toward FDA approval. If successful, this medication development project could offer patients a novel non-addictive, potent, and safe analgesic and thus have a direct impact on the opioid crisis.

5UG3DA047714-02
Feasibility of Deep Brain Stimulation as a Novel Treatment for Refractory Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA WEST VIRGINIA UNIVERSITY Rezai, Ali R Morgantown, WV 2019
NOFO Title: Device-Based Treatments for Substance Use Disorders (UG3/UH3, Clinical Trial Optional)
NOFO Number: PAR-18-494
3UG3DA047793-01S1
tDCS to decrease opioid relapse Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA BUTLER HOSPITAL (PROVIDENCE, RI) Abrantes, Ana M Providence, RI 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Neurostimulation techniques, such as transcranial direct current stimulation (tDCS), have been used as interventions for substance use disorders. This is a supplement to the currently NIDA-funded UG3 DA047793, “tDCS to Decrease Opioid Relapse,” which will measure behavioral and brain responses following tDCS stimulation delivered during tasks that use a particular brain network involved in cognitive control, and utilizing FMRI to assess the effects. This supplement allows the researchers to add an EEG measurement to the study, to get a complete picture of how tDCS might affect the function of key brain networks in ways that could be helpful for SUDs.

1R34DA046730-01
Web-Based Treatment for Perinatal Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA MEDICAL UNIVERSITY OF SOUTH CAROLINA Guille, Constance Charleston, SC 2019
NOFO Title: Behavioral & Integrative Treatment Development Program (R34)
NOFO Number: PA-16-073
Summary:

The increased risk of maternal, obstetric, and newborn morbidity and mortality associated with perinatal prescription opioid (PO) misuse and opioid use disorder (OUD) is well established. Despite clear advances in maternal, fetal, and newborn health with treatment of perinatal opioid misuse and OUD, much work remains. Preliminary data has demonstrated significant reductions in opioid misuse as a result of our Cognitive Behavioral Therapy (CBT) program for pain combined with shared decision making for medication management for pregnant women misusing POs or with OUD (including heroin). However, access to the program is still limited and several obstacles to its expansion remain. This proposal will fill this critical gap by converting their CBT intervention from in-person sessions to a web-based interface. The proposed research will result in a critical advance in the management of opioid use and abuse during pregnancy and prevent both the acute and long-term risks associated with pre- and perinatal PO misuse and OUD, including overdose and death.

1UG3DA048508-01
Combined tDCS and Cognitive Training for the Treatment of Opioid Addiction Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA University of Minnesota Lim, Kelvin Minneapolis, MN 2019
NOFO Title: Device-Based Treatments for Substance Use Disorders (UG3/UH3, Clinical Trial Optional)
NOFO Number: PAR-18-494
1UG3DA050303-01
Development of an implantable closed-loop system for delivery of naloxone for the prevention of opioid-related overdose deaths Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Washington University Rogers, John St. Louis, MO 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Current opioid overdose treatment requires administration of naloxone by first responders, which requires timely identification of the overdose, the need for a rescue injection, and immediate availability of the medication. The development of a fail-safe treatment that would provide a life-saving dose of naloxone without the need for intervention by another party could significantly reduce mortality. The researchers aim to develop a new medical device comprising an implantable, closed-loop system that senses the presence of an opioid overdose, automatically administers a life-saving bolus injection of naloxone, and simultaneously alerts first responders.

1U01DA051071-01A1
Process Development, Manufacturing, and Preclinical Evaluation of a Monoclonal Antibody for Fentanyl Overdose Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA CESSATION THERAPEUTICS, LLC Bremer, Paul T. San Jose, CA 2020
NOFO Title: Grand Opportunity in Medications Development for Substance-Use Disorders (U01 - Clinical Trial Optional)
NOFO Number: PAR-19-327
Summary:

Opioid use disorder (OUD) is a significant public health problem in the United States. Particularly troubling is the rapid evolution of an opioid epidemic within the past decade, characterized by a surge in unintentional overdose deaths involving synthetic opioids, such as fentanyl. The current standard of care for opioid overdose is reversal with opioid antagonist naloxone. Naloxone is effective at reversing overdose from prescription opioids and heroin, but less effective when combating fentanyl, due to fentanyl?s high potency. Therapeutic monoclonal antibodies (mAbs) against fentanyl could overcome this problem by specifically preventing the drug from entering the central nervous system, averting overdose and attenuating opioid-induced respiratory depression. This study will develop and design of laboratory protocols needed to establish a Good Manufacturing Practice (GMP) process, quality assurance protocol, and stability profile for a new human mAb against fentanyl. Subsequent production of current GMP material will enable Good Laboratory Practice (GLP) toxicology studies in rats and dogs and eventually a Phase I/IIa clinical trial. This material will also be used in final opioid-induced respiratory depression studies in mice and non-human primates to confirm therapeutic efficacy of final drug product. If successful, these activities will enable filing for an investigational new drug application for this mAb candidate with the FDA.

1R61HL156248-01
Intranasal Leptin as A Novel Treatment of Opioid-Induced Respiratory Depression Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NHLBI JOHNS HOPKINS UNIVERSITY POLOTSKY, VSEVOLOD Y Baltimore, MD 2020
NOFO Title: HEAL Initiative: Pharmacotherapies to Reverse Opioid Overdose Induced Respiratory Depression without Central Opioid Withdrawal (Target Validation and Candidate Therapeutic Development (R61/R33 - Clinical Trial Not Allowed)
NOFO Number: RFA-HL-20-031
1R61HL156240-01
Treatment of Fentanyl Overdose-Induced Respiratory Failure by Low-Dose Dexmedetomidine Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NHLBI PENNSYLVANIA STATE UNIV HERSHEY MED CTR HAOUZI, PHILIPPE A Hershey, PA 2020
NOFO Title: HEAL Initiative: Pharmacotherapies to Reverse Opioid Overdose Induced Respiratory Depression without Central Opioid Withdrawal (Target Validation and Candidate Therapeutic Development (R61/R33 - Clinical Trial Not Allowed)
NOFO Number: RFA-HL-20-031
1UG3DA051392-01
Evaluation of the Safety and Efficacy of a New Oral Small Molecule GABA-B Receptor Positive Allosteric Modulator (PAM) as an Add-on Maintenance Therapy for Opioid Use Disorder (OUD) Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA ASTELLAS PHARMA GLOBAL DEVELOPMENT, INC. Blahunka, Paul NORTHBROOK, IL 2020
NOFO Title:
NOFO Number: DA19-002
1U01DA046430-01A1
Efficacy of buprenorphine and XR-naltrexone combination for relapse prevention in opioid use disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA NEW YORK STATE PSYCHIATRIC INSTITUTE Bisaga, Adam New York, NY 2020
NOFO Title:
NOFO Number: PA18-345
1UG3DA048502-01A1
Non-Invasive Vagal Nerve Stimulation in Patients with Opioid Use Disorders Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA EMORY UNIVERSITY Bremner, James Douglas Atlanta, Georgia 2020
NOFO Title:
NOFO Number: PAR18-494
1UG3DA050923-01
AMPA Antagonism: A Novel Pharmacology for Launching Recovery from Opioid Addiction Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA INDIANA UNIV-PURDUE UNIV AT INDIANAPOLIS Chambers, Robert Indianapolis, IN 2020
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

The excruciating multiday experience of opioid withdrawal syndrome (OWS), is exacerbated by the opioid antagonist drugs naloxone and naltrexone. This industry-academia collaboration will explore the potential of the glutamate AMPA receptor antagonist Tezampanel (TZP). Animal studies have shown reduced hyperactivity in brain circuits involved in OWS, without relying on direct stimulation or antagonism of the opioid system ,and has already been delivered to over 500 human subjects and found to be safe for a potential migraine indication. This proposal will build up the evidence needed to apply for and conduct open label and blinded placebo-controlled human trials of TZP safety and efficacy for OWS. If successful, this project will allow planning for a pivotal registration trial for TZP for OWS, and as a transitional treatment to long-term recovery on naltrexone and help us stem the tide of the opioid crisis.

1UG3DA052282-01
NOP Receptor Antagonist for OUD Pharmacotherapy Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA UNIVERSITY OF TEXAS MED BR GALVESTON Cunningham, Kathryn Galveston, TX 2020
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Medication-based treatment for opioid use disorder OUD aids in reducing mortality, opioid withdrawal, intake and opioid-seeking behaviors, however there is a clear need to increase the armamentarium of therapeutics for OUD. The ?non-classical? NOcicePtin receptor (NOPr) binds the endogenous neuropeptide nociceptin/orphanin FQ (N/OFQ) and is a promising target based on the evidence for its function in the regulation of the rewarding and motivational effects of opioids and alcohol. This study plans to assess the ability of the novel and selective NOPr antagonist BTRX-246040 to block oxycodone intake without abuse liability, and to suppress oxycodone withdrawal and relapse-like behaviors in rats. The study will also determine Drug Metabolism and Pharmacokinetics interactions (DMPK) between oxycodone and BTRX-246040 and brain penetrability in male and female rats. If successful, these preclinical studies will be followed by a Phase 1 clinical trial in non-treatment seeking OUD participants. These investigations will advance the prospects of validating a novel medication for OUD.

1UG3DA051383-01A1
Brexpiprazole as an Adjunctive Treatment to Buprenorhpine to Treat Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA OTSUKA PHARMACEUTICAL DEVELOPMENT & COMMERCIALIZATION, INC. Forbes, Andy Princeton, NJ 2020
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Over 2 million Americans have an Opioid Use Disorder (OUD) and the risks associated with misuse of opioids have prompted a public health crisis. There are three effective FDA-approved drugs for medication assisted treatment (MAT) of OUD. However, while MAT can reduce overall OUD related mortality by as much as fifty percent, relapse and treatment discontinuation are common within the first 5 to 12 weeks of MAT. As longer treatment retention is correlated with better long-term outcomes, the development of an adjunctive medication to alleviate key psychiatric symptoms associated with treatment failure would address an important unmet need. This study seeks to evaluate the safety and efficacy of brexpiprazole as adjunctive treatment to buprenorphine/naloxone in OUD. If successful, this study could enhance the effectiveness of OUD treatments by extending the duration of treatment, thereby reducing the likelihood for relapse and overdose.

1UF1DA054817-01A1
Preclinical Development of Novel Dual OXR/KOR Antagonists for Treatment of Substance Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA HAGER BIOSCIENCES, INC. BUTERA, JOHN A Bethlehem, PA 2021
NOFO Title: Grand Opportunity in Medications Development for Substance-Use Disorders (U01 - Clinical Trial Optional)
NOFO Number: PAR-19-327
Summary:

Substance use disorder (SUD) is a serious public health and socioeconomic burden. In this project, researchers will develop novel drug compounds that dually target orexin receptors and kappa opioid receptors, which have both been implicated in SUD. The compounds will then be tested for effectiveness in preclinical models of SUD, including models of cocaine, methamphetamine, and fentanyl use. This research has the potential to provide highly impactful and innovative treatment options for SUD via simultaneous modulation of multiple signaling pathways.

1UG3DA053123-01
Bacteriophage virus-like particle vaccines for fentanyl and heroin overdose Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA UNIVERSITY OF NEW MEXICO HEALTH SCIS CTR CHACKERIAN, BRYCE C Albuquerque, NM 2021
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: PAR-20-092
Summary:

Opioids account for nearly 70 percent of overdose deaths in the United States, with fentanyl and heroin use the most common causes. The goal of this project is to create a vaccine to elicit serum antibodies that bind and sequester the drug in the blood, preventing it from crossing the blood-brain barrier where it acts on the central nervous system. Current opioid vaccine strategies require multiple boosts and months to reach peak titers, the level of antibodies in a blood sample, and have yet to show protection against lethal overdose. In this project, researchers will use a bacteriophage virus-like particle vaccine platform to engineer and test the effectiveness of a combined vaccine to elicit high titer antibodies quickly to protect against lethal overdose from fentanyl or heroin.

1UG3DA050942-01A1
An Intranasal GDNF Gene Therapy for Opioid Relapse Reduction Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA NORTHEASTERN UNIVERSITY WASZCZAK, BARBARA LEE Boston, MA 2021
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: PAR-20-092
Summary:

There are currently no effective non-opioid-based pharmacotherapies for treatment of opioid use disorder (OUD). Glial cell line-derived neurotrophic factor (GDNF) is a beneficial protein normally present in low levels in the adult brain, and there is strong evidence that it has clinical potential as a therapy for OUD and relapse reduction. Researchers have developed a non-invasive approach that bypasses the blood-brain barrier to increase levels of GDNF using intranasal administration of gene nanoparticles that make GDNF protein within the brain. This project will test whether this intranasal GDNF gene therapy can suppress drug craving and reduce the tendency to start using a drug again after a period of abstinence in experimental models, thus providing a long-term therapeutic strategy for reducing opioid craving and preventing relapse.

1UG3DA052166-01A1
CVL-354, a kappa opioid receptor antagonist for treatment of opioid use disorder, withdrawal and relapse Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA CEREVEL THERAPEUTICS, LLC IREDALE, PHILIP Cambridge, MA 2021
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: PAR-20-092
Summary:

Kappa opioid receptors (KOR) are expressed in brain areas that control reward, motivation, and anxiety. Upon opioid drug withdrawal and abstinence, dysregulated KOR signaling can result in aversive physical and affective states that are a major driver of relapse. Preclinical data have demonstrated that antagonism of KOR can reduce the physical symptoms of opioid withdrawal. Currently, the alpha 2-adrenergic agonist lofexidine is the only approved therapy for the mitigation of the physical symptoms of opioid withdrawal but it is only modestly effective and can have significant unwanted side effects. Cerevel Therapeutics has identified a novel selective KOR antagonist, CVL-354, with unique properties and good preclinical safety margins. This project will assess this drug in early human safety/pharmacokinetics and occupancy studies. Future studies will then be able to assess efficacy of this drug in acute opioid withdrawal.