Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Sort descending Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Year Awarded
3U19TW007401-14S1
EXPLORATION, CONSERVATION, & DEVELOPMENT OF MARINE BIODIVERSITY IN FIJI AND THE SOLOMON ISLANDS Preclinical and Translational Research in Pain Management FIC GEORGIA INSTITUTE OF TECHNOLOGY HAY, MARK E ATLANTA, GA 2018
NOFO Title: Limited Competition: International Cooperative Biodiversity Groups (U19)
NOFO Number: RFA-TW-13-001
Summary:

This International Cooperative Biodiversity Group application aims to discover and develop small molecule drug leads from cultured marine microbes and diverse coral reef organisms collected from Fiji and the Solomon Islands. Drug discovery efforts will focus on four major disease areas of relevance to the United States and low- and middle-income countries: infectious disease, including tuberculosis and drug-resistant pathogens; neglected tropical diseases, including hookworms and roundworms; cancer; and neurodegenerative and central nervous system disorders. Screening in these therapeutic areas will be performed in collaboration with two major pharmaceutical companies, two highly respected academic groups, and various testing centers and government resources that are available to facilitate drug discovery and development. The acquisition of source material for this program will be linked to biotic surveys, informed by ecological investigations addressing the chemical mediation of biotic interactions, and enriched using ecology-based strategies designed to maximize secondary metabolite production and detection.

1R01NS118563-01A1
FKBP51 Antagonism to Prevent Chronic Pain: Optimizing Efficacy & Evaluating Safety and Mechanisms Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIV OF NORTH CAROLINA CHAPEL HILL LINNSTAEDT, SARAH ; MCLEAN, SAMUEL A Chapel Hill, NC 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

A substantial proportion of Americans seeking emergency care after traumatic stress exposure (TSE) are at a high risk of chronic pain and opioid use/misuse. Physiologic systems involved in the stress response could possibly play a critical role in the development of chronic pain after TSE. FK506-binding protein 51 (FKBP51) is an intracellular protein known to affect glucocorticoid negative feedback inhibition and component of stress response, provides an important non-opioid therapeutic target for such chronic pain. This project will test the hypothesis that functional inhibition of FKBP51 prevents or reduces enduring stress-induced hyperalgesia in a timing, dose, and duration-dependent manner in animal models of single prolonged stress alone and in combination with surgery. This project will also test if FKBP51 inhibition enhances recovery following TSE via reduction in pro-inflammatory responses in peripheral and central tissues. It will also test whether FKBP51 inhibition effects cardiotoxicity or addiction. Completion of these studies will increase understanding of FKBP51 as a novel therapeutic target for the prevention of chronic pain and opioid use/misuse resulting from TSE.

1RM1NS128741-01
From Nerve to Brain: Toward a Mechanistic Understanding of Spinal Cord Stimulation in Human Subjects Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS Massachusetts General Hospital WAINGER, BRIAN JASON (contact); FREEMAN, ROY ; LOGGIA, MARCO LUCIANO Boston, MA 2022
NOFO Title: HEAL Initiative: Interdisciplinary Teams to Elucidate the Mechanisms of Device-Based Pain Relief (RM1 Clinical Trial Optional)
NOFO Number: NS22-016
Summary:

Spinal cord stimulators (SCS) and related devices are commonly used for hard-to-treat pain conditions, but how they work remains unclear. This knowledge is important for improving device design and stimulation patterns, as well as for determining which patients will benefit. Through a series of clinical studies in patients with SCS devices, this project will explore the hypothesis that SCS devices reduce pain by changing the excitability of peripheral sensory nerve fibers in the spinal cord. The results should guide development of biomarkers to advance research further.

1R21DA057500-01
G Alpha Z Subunit as a Potential Therapeutic Target to Modulate Mu Opioid Receptor Pharmacology Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDA UNIVERSITY OF ROCHESTER BIDLACK, JEAN M Rochester, NY 2022
NOFO Title: Emergency Awards: HEAL Initiative-Early-Stage Discovery of New Pain and Opioid Use Disorder Targets Within the Understudied Druggable Proteome (R21 Clinical Trial Not Allowed)
NOFO Number: TR22-011
Summary:

Opioids affect the body by attaching to certain types of receptors that attach to G-proteins (particularly, a subtype called G-alpha). Opioids vary in their ability to provide pain relief as well as in their ability to require more drug to provide a response, known as tolerance. This project will explore the potential of various G-alpha subunits to increase or decrease opioid receptor signaling. The research findings will lay the groundwork for tailoring G-alpha related opioid effects to provide more pain relief while being less addictive.

1R01NS120663-01A1
Genetic and Pharmacological Validation of CRMP2 Phosphorylation as a Novel therapeutic Target for Neuropathic Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF ARIZONA KHANNA, RAJESH Tucson, AZ 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Peripheral nerve injury-induced upregulation of three axonal guidance phosphoproteins correlates with the development of neuropathic pain through an unidentified mechanism: 1) collapsin response mediator protein 2 (CRMP2); 2) the N-type voltage-gated calcium (CaV2.2); 3) the NaV1.7 voltage-gated sodium channel. Injury induced phosphorylated-CRMP2/CaV2.2 and phosphorylated-CRMP2/NaV1.7 upregulation in the sensory pathway may promote abnormal excitatory synaptic transmission in spinal cord that leads to neuropathic pain states. This project will validate CRMP2 phosphorylation as a novel target in neuropathic pain using innovative tools. Examples include a genetic approach (crmp2S522A) in mice as well as a non-opioid pharmacological approach (a novel CRMP2-phsphorylation targeting compound). Demonstrating that inhibition of CRMP2 phosphorylation reverses or prevents neuropathic pain will promote the discovery and validation of a novel therapeutic target (CRMP2-phosphorylation) to facilitate the development of novel pain therapeutics.

1U19NS130617-01
Harvard PRECISION Human Pain Center Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS BRIGHAM AND WOMEN'S HOSPITAL RENTHAL, WILLIAM RUSSELL (contact); WOOLF, CLIFFORD J Boston, MA 2022
NOFO Title: HEAL Initiative: Discovery and Functional Evaluation of Human Pain-associated Genes and Cells (U19 Clinical Trial Not Allowed)
NOFO Number: NS22-018
Summary:

This project will use state-of-the-art technologies to analyze individual cells to characterize how human pain receptors communicate pain between the human dorsal root ganglia and the brain – including how the signals vary across diverse populations. This research will generate useful, high-quality human data about pain for further analysis and re-use by other scientific teams, toward identifying and prioritizing novel therapeutic targets for pain.

3U44NS115111-02S1
High-Resolution, Spinal Cord Stimulation for Non-Opioid Treatment of Neuropathic Pain Preclinical and Translational Research in Pain Management NINDS MICRO-LEADS, INC. MCLAUGHLIN, BRYAN L Somerville, MA 2020
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA18-591
Summary:

This project aims to develop and clinically validate a 64-channel spinal cord stimulation therapy for treating chronic neuropathic pain of the lower extremities, groin, and lower back. With an increased channel count and the ability to precisely target medial and lateral structures of the spinal cord, the system will treat chronic pain with greater efficacy and reduced side effects. This project will pursue a safe, effective, and non-addictive treatment for neuropathic pain through the testing of enhanced HD64 active leads to be manufactured under GMP regulations. The leads will then undergo electrical, mechanical, biocompatibility, and sterilization testing before being tested in a 10-subject early feasibility study.

3U44NS115111-03S1
High-Resolution, Spinal Cord Stimulation for Non-Opioid Treatment of Neuropathic Pain Preclinical and Translational Research in Pain Management NINDS MICRO-LEADS, INC. MCLAUGHLIN, BRYAN L Somerville, MA 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

This research seeks to develop a high-resolution spinal cord stimulation therapy for treating chronic neuropathic pain of the lower extremities, groin, and lower back. Systems that use wireless communication methods require robust strategies to prevent various forms of cyberattacks on implantable devices. The focus of this project's research will be to develop a new cybersecurity risk-reduced architecture for Bluetooth low-energy implant communication.

1U44NS115111-01
High-Resolution, Spinal Cord Stimulation for Non-Opioid Treatment of Neuropathic Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS MICRO-LEADS, INC. MCLAUGHLIN, BRYAN L Somerville, MA 2019
NOFO Title: HEAL Initiative: Translational Devices to Treat Pain (U44 Clinical Trial Optional)
NOFO Number: RFA-NS-19-017
Summary:

The research team will develop HD64—a high-resolution, 64-channel spinal cord stimulation therapy to provide more pain relief for those suffering from chronic neuropathic pain and opioid dependence. HD64 provides an ultra-thin conformal blanket of stimulation contacts across the width of the spinal cord and enables more precise targeting of the lateral structures of the spinal cord to enhance pain relief. A cadaveric pilot run followed by a non-significant risk intraoperative study will be performed to inform the design parameters of HD64 arrays. The study will evaluate activation of medial and lateral spinal targets. At the end of Phase 1, the clinical feasibility of HD64 surgical leads will be established. In Phase 2, researchers will develop an external active lead pulse generator and charger. They will perform an early feasibility study human trial using active HD64 and mechanical and electrical design verification testing and chronic safety studies in large animals.

1UG3TR003149-01
hiPSC-based DRG Tissue Mimics on Multi-well Microelectrode Arrays as a Tissue Chip Model of Acute and Chronic Nociception Preclinical and Translational Research in Pain Management Translational Research to Advance Testing of Novel Drugs and Human Cell-Based Screening Platforms to Treat Pain and Opioid Use Disorder NCATS UNIVERSITY OF TEXAS DALLAS BLACK, BRYAN JAMES Dallas, TX 2019
NOFO Title: HEAL Initiative: Tissue Chips to Model Nociception, Addiction, and Overdose (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-TR-19-003
Summary:

Researchers will develop an innovative three-dimensional (3D) model of acute and chronic nociception using human induced pluripotent stem cell (hiPSC) sensory neurons and satellite glial cell surrogates. They will develop a tissue chip for modeling acute and chronic nociception based on 3D hiPSC-based dorsal root ganglion tissue mimics and a high-content, moderate-throughput microelectrode array. Researchers will demonstrate stable spontaneous and noxious stimulus-evoked behavior in response to thermal, chemical, and electrical stimulation challenges. They aim to demonstrate sensitivity to translational control via ligand receptor interactions between neuronal and non-neuronal cell types. They also will demonstrate the quantitative efficiency and preclinical efficacy of our system by detecting known ligand-based modulators of translational control and voltage-gated ion channel antagonists in a sensitized model of chronic nociception. Researchers will leverage the high-throughput nature of our tissue chip model to screen Food and Drug Administration–approved bioactive compounds.

1UG3NS115108-01A1
Home-based transcutaneous electrical acustimulation for abdominal pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS JOHNS HOPKINS UNIVERSITY CHEN, JIANDE Baltimore, MD 2020
NOFO Title: HEAL Initiative: Translational Devices to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-19-016
Summary:

Currently, there are no adequate therapies for abdominal pain in patients with Irritable Bowel Syndrome (IBS), a gastrointestinal disorder affecting 14-20% of the US population. More than 40% of IBS patients regularly use opioid narcotics. An alternative treatment for IBS that has been shown to be an effective pain management strategy is electroacupuncture. However its drawbacks include infrequent administration, unclear mechanistic understanding, and lack of methodology optimization. This study will use a noninvasive method of transcutaneous electrical acustimulation (TEA) by replacing needles with surface electrodes and testing acupoints that target peripheral nerves. Based on prior mechanistic and clinical studies, two stimulation parameters and effective acupoints will be tested. In the UG3 phase, the TEA device and a cell phone app will be optimized for use in IBS abdominal pain, and an acute clinical study will determine the best stimulation locations and parameters. During the UH3 phase, an early feasibility clinical study will be performed in 160 IBS patients in treating abdominal pain. Participants will self-administer the therapy at home/work and will be randomized across four treatment groups to determine the therapeutic potential of the TEA system.

1UG3TR003150-01
Human Microphysiological Model of Afferent Nociceptive Signaling Preclinical and Translational Research in Pain Management Translational Research to Advance Testing of Novel Drugs and Human Cell-Based Screening Platforms to Treat Pain and Opioid Use Disorder NCATS TULANE UNIVERSITY OF LOUISIANA MOORE, MICHAEL J (contact); ASHTON, RANDOLPH S; RAJARAMAN, SWAMINATHAN New Orleans, LA 2019
NOFO Title: HEAL Initiative: Tissue Chips to Model Nociception, Addiction, and Overdose (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-TR-19-003
Summary:

This project will develop a human cell-based model of the afferent pain pathway in the dorsal horn of the spinal cord. The research team’s approach utilizes novel human pluripotent stem cell (hPSC)-derived phenotypes in a model that combines 3D organoid culture with microfabricated systems on an integrated, three-dimensional (3D) microelectrode array. Researchers will establish the feasibility of a physiologically relevant, human 3D model of the afferent pain pathway that will be useful for evaluation of candidate analgesic drugs. They will then improve the physiological relevance of the system by promoting neural network maturation before demonstrating the system’s utility in modeling adverse effects of opioids and screening compounds to validate the model. Completion of the study objective will establish novel protocols for deriving dorsal horn neurons from hPSCs and create the first human microphysiological model of the spinal cord dorsal horn afferent sensory pathway.

1U19NS130608-01
Human Nociceptor and Spinal Cord Molecular Signature Center Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TEXAS DALLAS PRICE, THEODORE J (contact); CURATOLO, MICHELE ; DOUGHERTY, PATRICK M Richardson, TX 2022
NOFO Title: HEAL Initiative: Discovery and Functional Evaluation of Human Pain-associated Genes and Cells (U19 Clinical Trial Not Allowed)
NOFO Number: NS22-018
Summary:

This project will identify molecular characteristics of human sensory neurons and non-neuronal cells from the human dorsal root ganglia. This structure located outside the spinal cord is integrally involved in communicating pain signals to and from the brain. The research will use molecular approaches to characterize tissues obtained from organ donors and in patients who experience chronic pain. The findings will also help generate a connectivity map, or “connectome,” of nerve cell connections between the dorsal root ganglia of the spinal cord and the brain.

1U19NS130608-01
Human Nociceptor and Spinal Cord Molecular Signature Center Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TEXAS DALLAS PRICE, THEODORE J (contact); CURATOLO, MICHELE; DOUGHERTY, PATRICK M Richardson, TX 2023
NOFO Title: Notice of Special Interest (NOSI): Encourage Eligible NIH HEAL Initiative Awardees to Apply for Administrative Supplements to Support Career Enhancement Related to Clinical Research on Pain
NOFO Number: NOT-NS-22-087
Summary:

This project supports a post-baccalaureate trainee develop skills needed to pursue a career in clinical pain research. The research will use molecular tools to study nerve, joint, muscle, and fascia tissues from individuals with chronic low back pain who had spine surgery. The research will include working with patients, designing clinical studies, and sharing results. 

1R01DE029342-01
Identification and Validation of a Novel Central Analgesia Circuit Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDCR DUKE UNIVERSITY WANG, FAN Durham, NC 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

This project focuses on identifying and validating a new central analgesic circuit in the brain, based on a highly innovative hypothesis that the strong analgesic effects of general anesthesia (GA) are in part carried out by GA-mediated activation of the endogenous analgesic circuits. Preliminary discovery studies found that a subset of GABAergic neurons located in the central amygdala (CeA) become strongly activated and express high levels of the immediate early gene Fos under GA (hereafter referred to as CeAGA neurons). Furthermore, activation of these neurons exert profound pain-suppressing effects in an acute pain model and a chronic orofacial neuropathic pain model in mice. Based on these exciting preliminary findings, this project will identify and validate CeAGA neurons’ analgesic functions utilizing multiple mouse pain models. Identification of these shared common pathways that need to be suppressed by specific subtypes of CeAGA analgesic neurons will be highly critical for developing precise CeAGA-targeted therapies to treat chronic pain.

1R01CA249939-01
Identification of Novel Targets for the Treatment of Chemotherapy-Induced Painful Peripheral Neuropathy Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF MARYLAND BALTIMORE MELEMEDJIAN, OHANNES KEVORK Baltimore, MD 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Chemotherapy-induced painful peripheral neuropathy (CIPN) is the most common toxicity associated with widely used chemotherapeutics. CIPN accounts for significant dose reductions and/or discontinuation of these life-saving treatments. Unfortunately CIPN can also persist in cancer-survivors, adversely affecting their quality of life. CIPN is not well-managed with existing pain therapeutics. Recent preliminary findings suggest that the transcription factor hypoxia-inducible factor alpha (HIF1A) is the target for the chemotherapeutic bortezomib, a proteasome inhibitor. This project will test the hypothesis that bortezomib chemotherapy-induced expression of HIF1A, PDHK1 and LDHA constitute an altered metabolic state known as aerobic glycolysis (AG) that leads to the initiation and maintenance of peripheral neuropathy and pain using a novel tumor-bearing animal model of CIPN. This project aims to validate HIF1A as a therapeutic target for the prevention of CIPN, as well as validate PDHK1 and LDHA as non-opioid therapeutic targets for chronic or established CIPN in animal models.

3U24DK116214-02S1
ILLUMINATING DRUGGABLE DARK MATTER Preclinical and Translational Research in Pain Management NIDDK UNIVERSITY OF CALIFORNIA, SAN FRANCISCO MCMANUS, MICHAEL T; JAN, LILY Y San Francisco, CA 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

The goal of this project is to generate data and reagents that help uncover critical functions of the poorly characterized members of ion channels. It focuses on co-perturbation of ion channel genes and their interacting genetic components as opposed to singly altering ion channel genes in mouse models. This approach will validate our proteomics approaches in the most definitive manner: in vivo. We see in vivo exploration as an essential step to evaluate ion channel function. Our major aims include mapping ion channel interactions and complexes using a high-throughput proteomics platform at UCSF. These data will be interrogated using integrative approaches established by the Monarch Initiative, where biochemical interactions will be validated and prioritized for further study. Another major aim is function-centric: We use mouse models for elucidation of human disease mechanisms, where we embrace a genetic interaction scheme to uncover ion channel redundancy and polygenic effects.

1RF1NS130481-01
Immune Modulating Therapies to Treat Complex Regional Pain Syndrome Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS DREXEL UNIVERSITY AJIT, SEENA Philadelphia, PA 2022
NOFO Title: HEAL Initiative: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: NS22-034
Summary:

Complex regional pain syndrome is a difficult-to-treat chronic condition that causes excess and prolonged pain and inflammation after injury to an arm or leg and includes damage to skin of affected limbs. Although it is known that aberrant immune system function plays a role in this condition, the details remain unclear about how this occurs – in particular, through the adaptive immune system that relies on specialized immune cells and antibodies to protect the body from harm.  This project will study the role of certain immune cells (T cells) that circulate throughout the body or reside in bone using both rat or human bone samples from patients with complex regional pain syndrome.

1U44NS115632-01
Implantable Peripheral Nerve Stimulator for Treatment of Phantom Limb Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS RIPPLE, LLC MCDONNALL, DANIEL Salt Lake City, UT 2019
NOFO Title: HEAL Initiative: Translational Devices to Treat Pain (U44 Clinical Trial Optional)
NOFO Number: RFA-NS-19-017
Summary:

The research team will develop an implantable neural stimulation system to provide natural and intuitive sensation for prosthesis users. The nerve cuff technology meets the requirements for a sensory feedback system capable of providing consistent and controlled electrical stimulation. Coupled with a multichannel implantable stimulator, this electrode array will offer substantial improvement over existing options to treat phantom limb pain (PLP). In Phase I, researchers will finalize array architectures for evaluation in cadaver studies, complete integration of electrodes with our stimulator, conduct benchtop verification of electrical and mechanical performance, send implants for third-party evaluation of system biocompatibility, and complete a Good Laboratory Practice animal study to validate safety and efficacy. In Phase II, researchers will conduct a 5-subject clinical study to test the implantable stimulation system. Each unilateral prosthesis user will be implanted for one year as researchers evaluate the safety and efficacy of this implantable device to treat PLP.

1R61NS126029-01A1
Inhibiting RIPK1 with Necrostatin-1 for Safe and Effective Pain Treatment Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS Massachusetts General Hospital SHEN, SHIQIAN (contact); HOULE, TIMOTHY T; WANG, CHANGNING ; ZHANG, CAN MARTIN Boston, MA 2022
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development [Small Molecules and Biologics] (R61 Clinical Trial Not Allowed)
NOFO Number: NS21-029
Summary:

Recent studies have reported that neuropathic pain involves changes in the central nervous system that are linked to necroptosis (programmed necrotic cell death) and release of cellular components that create neuroinflammation. Necroptosis is a type of necrotic cell death affected by the protein receptor-interacting serine/threonine-protein kinase 1 (RIPK1 or RIP1). Preliminary studies also indicate that pain increases levels of RIPK1 in key brain regions implicated in pain processing. This project aims to further validate RIPK1 as a target for neuropathic pain using a newly developed positron emission tomography imaging approach. The work will pave the way for new brain-penetrant RIPK1 inhibitors as a safe, effective, and nonaddictive treatment approach for neuropathic pain.

1R61NS127287-01
Initial Development of AEG-1 Inactivation as a Possible Strategy for Pain Treatment Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS Virginia Commonwealth University DAMAJ, M IMAD (contact); SARKAR, DEVANAND Richmond, Virginia 2022
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development [Small Molecules and Biologics] (R61 Clinical Trial Not Allowed)
NOFO Number: NS21-029
Summary:

There is a continued need to discover and validate new targets for potential therapeutic strategies for effective and safe treatment of pain. This project focuses on the protein metadherin, also known as astrocyte elevated gene-1 protein (AEG-1), as a possible new target for pain treatment. Preliminary studies have shown that mice genetically engineered to lack metadherin had significantly lower inflammation and chronic pain-related behaviors. This project aims to further validate AEG-1 as a pain target and test whether reducing levels in white blood cells called macrophages might work as a therapeutic strategy to reduce chronic inflammatory and/or neuropathic pain using an innovative nanoparticle approach to target specific cells.

1UC2AR082196-01
Innervation of the Knee and TMJ  Preclinical and Translational Research in Pain Management Restoring Joint Health and Function to Reduce Pain (RE-JOIN) NIAMS UNIVERSITY OF FLORIDA ALLEN, KYLE D (contact); ALMARZA, ALEJANDRO JOSE; CAUDLE, ROBERT M Gainesville, FL 2022
NOFO Title: HEAL Initiative: Restoring Joint Health and Function to Reduce Pain Consortium (RE-JOIN) (UC2 Clinical Trial Not Allowed)
NOFO Number: RFA-AR-22-009
Summary:

A complex network of different nerve cell subtypes connects to joints in different ways throughout body regions, such as the knee and the temporomandibular joint (TMJ) that connects the lower jaw and skull. This project aims to identify disease-specific pain symptoms using clinically relevant rat models of TMJ and knee osteoarthritis – and compare findings with disease-specific pain symptoms in human patients with the same conditions. This research may lead to a better understanding of how different nerve cell subtypes contribute to joint pain as well as how these nerve cell subtypes change with age and disease.

3UG3TR002151-01S1
INTEGRATED MICROPHYSIOLOGICAL SYSTEM OF CEREBRAL ORGANOID AND BLOOD VESSEL FOR DISEASE MODELING AND NEUROPSYCHIATRIC DRUG SCREENING Preclinical and Translational Research in Pain Management NCATS COLUMBIA UNIVERSITY HEALTH SCIENCES LEONG, KAM W NEW YORK, NY 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

The clinical utility of opioids for pain treatment is limited by its risk for developing opioid usage disorders (OUD). These untoward effects impose a severe burden on society and present difficult therapeutic challenges for clinicians. We propose to extend our cerebral organoid MPS to facilitate the investigation of neuronal response to opioids and identify cellular and molecular signatures in patients vulnerable to OUD. We have assembled a team with complementary expertise in clinical characterization of OUD, cerebral organoid MPS modeling, single cell RNA-seq technology, and functional characterization of neurons in a mesolimbic reward system to test the hypothesis that midbrain MPS is a clinically relevant pre-clinical model for study of opioid usage disorder.

1U19NS130607-01
INTERCEPT: Integrated Research Center for Human Pain Tissues Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS WASHINGTON UNIVERSITY GEREAU, ROBERT W Saint Louis, MO 2022
NOFO Title: HEAL Initiative: Discovery and Functional Evaluation of Human Pain-associated Genes and Cells (U19 Clinical Trial Not Allowed)
NOFO Number: NS22-018
Summary:

This project will use a variety of state-of-the-art technologies to generate a comprehensive  gene expression map of human peripheral nerves. The research will enhance understanding about genes involved in various painful conditions associated with nerve damage (neuropathies) resulting from injury or disease. This research will analyze DNA sequences of individual neuronal and non-neuronal cells in human nerve cells (from individuals with and without pain located outside the spinal cord that are involved in pain signal transmission. The findings, together with other imaging and computational approaches, will be used to generate a spatial atlas of the human dorsal root ganglia – a key hub for pain communication between the brain and spinal cord.

3U01DE025633-03S1
INVESTIGATION AND MODULATION OF THE MU-OPIOID MECHANISM IN CHRONIC TMD (IN VIVO) Preclinical and Translational Research in Pain Management NIDCR UNIVERSITY OF MICHIGAN AT ANN ARBOR DASILVA, ALEXANDRE ANN ARBOR, MI 2018
NOFO Title: Biology of the Temporomandibular Joint in Health and Disease (R01)
NOFO Number: PA-14-358
Summary:

Initial studies using positron emission tomography (PET) with [11C] carfentanil, a selective radiotracer for ?-opioid receptor (?OR), have demonstrated that there is a decrease in thalamic µOR availability (non-displaceable binding potential BPND) in the brains of TMD patients during masseteric pain compared to healthy controls. ?-opioid neurotransmission is arguably one of the mechanisms most centrally involved in pain regulation and experience. The main goals of our study are: first, to exploit the ?-opioidergic dysfunction in vivo in TMD patients compared to healthy controls; second, to determine whether 10 daily sessions of non-invasive and precise M1 HD-tDCS have a modulatory effect on clinical and experimental pain measures in TMD patients; and third, to investigate whether repetitive active M1 HD-tDCS induces/reverts ?OR BPND changes in the thalamus and other pain-related regions and whether those changes are correlated with TMD pain measures.