Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Year Awarded Sort descending
3R01NS098826-02S1
PROTEASE ACTIVATED RECEPTOR TYPE 2 TARGETING FOR MIGRAINE PAIN Preclinical and Translational Research in Pain Management NINDS UNIVERSITY OF TEXAS DALLAS PRICE, THEODORE J; BOITANO, SCOTT; DUSSOR, GREGORY O; VAGNER, JOSEF RICHARDSON, TX 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Migraine is the most common neurological disorder. Currently available treatments fail to effectively manage migraine in most patients. Development of new therapeutics has been slow due in large part to a poor understanding of the underlying pathology of migraine. Endogenous proteases, released in the meninges by resident mast cells, have been proposed as a potential driver of migraine pain via an action on protease activated receptor type 2 (PAR2). The central hypothesis is that PAR2 expression in nociceptors that project to the meninges plays a key role in the pathogenesis of migraine pain. The aims are to: 1) use the established PAR2 development pipeline to design new PAR2 antagonists with improved drug-like properties; 2) use pharmacological tools in a novel mouse migraine model to further understand the potential role of PAR2 in migraine; and 3) use mouse genetics to study the cell type–specific role of PAR2 in migraine pain.

5R01NS094461-04
Clustering of individual and diverse ion channels together into complexes, and their functional coupling, mediated by A-kinase anchoring protein 79/150 in neurons Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TEXAS HLTH SCI CTR SAN ANTONIO SHAPIRO, MARK S San Antonio, TX 2018
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

Multi-protein complexes have emerged as a mechanism for spatiotemporal specificity and efficiency in the function and regulation of cellular signals. Many ion channels are clustered either with the receptors that modulate them or with other ion channels whose activities are linked. Often, the clustering is mediated by scaffolding proteins, such as AKAP79/150. We will probe complexes containing AKAP79/150 and three different channels critical to nervous function: KCNQ/Kv7, TRPV1, and CaV1.2. We will use"super-resolution" STORM imaging of primary sensory neurons and heterologously expressed tissue-culture cells, in which individual complexes can be visualized at 10–20 nm resolution with visible light. We hypothesize that AKAP79/150 brings several of these channels together to enable functional coupling, which we will examine by patch-clamp electrophysiology of the neurons. Since all three of these channels bind to AKAP79/150, we hypothesize that they co-assemble into complexes in neurons and that they are dynamically regulated by other cellular signals.

2R44NS086343-04
IND-ENABLING STUDIES ON NOVEL CAV3 T-CHANNEL MODULATORS FOR TREATMENT OF NEUROPATHIC PAIN Cross-Cutting Research Small Business Programs NINDS AFASCI, INC. XIE, XINMIN SIMON REDWOOD CITY, CA 2018
NOFO Title: NINDS Renewal Awards of SBIR Phase II Grants (Phase IIB) for Pre-Clinical Research (R44)
NOFO Number: PAR-17-480
Summary:

We discovered a class of non-opioid modulators of the T-type Cav3.2 channel that could treat neuropathic pain. In vivo pharmacokinetic and pharmacodynamic studies and preliminary toxicological studies identified AFA-279 and other candidates, which did not produce observable side-effects and showed greater analgesic effects than other neuropathic pain medications in rodent models. The goal of this proposed project is to submit the IND application on our Cav3.2 modulator to the Food and Drug Administration (FDA). We will produce AFA-279 under Good Manufacturing Practice (GMP)–like conditions using chemical manufacturing controls for Good Laboratory Practice (GLP) nonclinical toxicity studies and GMP clinical batch future Phase 1 clinical trials, complete toxicological and safety studies to establish the safety profile of AFA-279, prepare and submit the IND application, and then initiate early clinical trials. Our ultimate goal is to deliver a safer, more effective, non-opioid Cav3.2 channel modulator to patients suffering from neuropathic pain.

3UG1DA040316-04S3
A Foundation to Examine Reasons for Discontinuation for Buprenorphine Care in the Veterans Health Administration Translation of Research to Practice for the Treatment of Opioid Addiction Enhancing the National Drug Abuse Treatment Clinical Trials Network to Address Opioids NIDA HENNEPIN HEALTHCARE RESEARCH INSTITUTE BART, GAVIN; JOSEPH, ANNE Minneapolis, MN 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

This health care data mining study analyzes existing Veterans Health Administration data sets to examine patient and organizational characteristics associated with buprenorphine termination during outpatient OUD treatment. This project will generate data useful for predictive modeling on how to implement targeted approaches to improve retention in OUD treatment. An objective is to identify patient, provider and system targets to reduce unnecessary or inappropriate discontinuation of buprenorphine care. These analyses are critical for establishing initial constructs to evaluate reasons for treatment discontinuation based upon patient, provider and system factors in different health care settings.

3R01MD009063-05S1
ETHNIC DIFFERENCES IN ENDOGENOUS PAIN REGULATION: PET IMAGING OF OPIOID RECEPTORS Clinical Research in Pain Management NIMHD Johns Hopkins University CAMPBELL, CLAUDIA MICHELLE Baltimore, MD 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Ethnic groups show substantial variability in the experience of acute and clinical pain, with African Americans (AAs) having more clinical pain conditions and higher levels of pain severity and pain-related disability compared to non-Hispanic whites (NHW). Ethnic differences in opioid neurotransmitters suggest that these systems function less efficiently among AAs and may account for differences in pain and analgesic responses. The overwhelming majority of clinically used opioids elicit their effects through activation of the mu-opioid receptor, making it a relevant target for investigation. We propose to examine ethnic differences in the supraspinal endogenous opioid system using positron emission tomography (PET) imaging of mu-opioid receptors employing the mu-selective agonist [11C]carfentanil. Healthy AAs and sex-, age-, SES-matched NHW participants will undergo one baseline (non-pain) and one capsaicin-induced pain PET session using [11C]carfentanil. The current proposal will measure µ-opioid binding potential and examine its role in ethnic group differences in pain sensitivity.

3R01NR015642-04S1
SEVERE PAIN DURING WOUND CARE PROCEDURES: MODEL AND MECHANISMS Clinical Research in Pain Management NINR University of Iowa GARDNER, SUE E Iowa City, IA 2018
NOFO Title: Chronic Wounds: Advancing the Science from Prevention to Healing (R01)
NOFO Number: RFA-NR-15-001
Summary:

Wound care procedures (WCPs), such as dressing changes, cause moderate to severe pain in 74% of patients, nearly half of whom experience severe pain. Mainstay recommendations to prevent pain during WCPs have focused on either administration of preventive and procedural analgesia or use of expensive, non-adherent dressings. However, it is unclear which patients to target for analgesia or expensive dressings, leading to their inappropriate over- or underuse. To achieve the aims of the study, a comprehensive set of wound, patient, and biological factors will be measured concurrently with pain during a dressing change among a sample of 450 inpatients with open wounds. A predictive model will be developed and biological mechanisms will be examined using logistic regression. The proposed study has the potential to make significant contributions because clinicians will be able to target those patients requiring preventive pain control, thereby eliminating the spiraling impact of painful procedures on nociceptor sensitization.

3R01MD010372-03S1
PROSPECTIVE STUDY OF RACIAL AND ETHNIC DISPARITIES IN CHRONIC PAIN AND PAIN BURDEN Clinical Research in Pain Management NIMHD Rand Corporation MARSHALL, GRANT Santa Monica, CA 2018
NOFO Title: Mechanisms, Models, Measurement, & Management in Pain Research (R01)
NOFO Number: PA-13-118
Summary:

Data suggest that members of minority groups are more likely to develop chronic pain and to have greater pain burden. We will identify a set of promising intervention targets for reducing or eliminating racial/ethnic pain disparities. We will interview adult survivors of serious physical injury, comprised of roughly equal proportions of African-Americans (AA), Latinos, and non-Latino Whites (NLW), and examine their medical records for information on injury severity and medication use in-hospital. Our aims are to determine whether: 1) AA and Latino physical injury survivors experience more severe pain relative to NLW; 2) AA and Latino injury survivors experience greater pain burden relative to NLW counterparts; 3) differences in pain severity burden are linked to a set of target candidates for interventions; and (4) pain outcomes in at-risk minority groups can be linked to a set of target candidates for group-tailored interventions to reduce pain severity and pain burden.

1R01HD096800-01
EFFECTS OF OPIOID USE DISORDER IN PREGNANCY ON LONG-TERM MATERNAL AND CHILD OUTCOMES Enhanced Outcomes for Infants and Children Exposed to Opioids NICHD Indiana University - Purdue University Indianapolis SADHASIVAM, SENTHILKUMAR Indianapolis, IN 2018
NOFO Title: Opioid Use Disorder in Pregnancy (R01)
NOFO Number: RFA-HD-18-036
Summary:

Neonatal abstinence syndrome (NAS) rates have increased since 2000. To determine multifactorial genetic, psychosocial predictors of opioid-related maternal and infant outcomes using rigorous prospective longitudinal design, innovative combinatorial pharmacogenetic approach, fetal MRI, and neonatal brain resting state functional MRI analysis, we hypothesize that a combination of maternal and infant genetic profiles, maternal psychosocial factors, maternal opioid treatment response, fetal and neonatal neurodevelopment, and NAS treatment will affect maternal and childhood outcomes with prenatal opioid exposure. The specific aims are to (1) Identify high-risk genetic profiles and psychosocial factors in pregnant women with opioid use disorder (OUD) and predisposing to poor maternal opioid maintenance treatment outcomes; (2) Determine maternal-infant genetic profiles and maternal opioid treatment factors predicting adverse fetal development, severity of NAS, and neonatal brain function; and (3) Develop predictive models for maternal opioid relapse and poor long-term neurodevelopmental outcomes in children with in utero opioid exposure.

3R01DA042859-02S1
OPIOIDS: PREVENTION OF IATROGENIC OPIOID DEPENDENCE AFTER SURGERY New Strategies to Prevent and Treat Opioid Addiction NIDA University of Michigan, Ann Arbor WALJEE, JENNIFER FILIP ANN ARBOR, MI 2018
NOFO Title: NIH Research Project Grant (Parent R01)
NOFO Number: PA-16-160
Summary:

Morbidity and mortality related to prescription opioids are accelerating in the United States. Identifying the factors that lead to new opioid dependence among opioid naïve patients is a critical opportunity to reduce prescription opioid dependence and unintended diversion. In the United States, the majority of individuals who become opioid dependent receive their first opioid prescription following surgical procedures, yet there are no clinical guidelines to inform appropriate postoperative opioid use. We will examine the patient factors that are associated with postoperative pain and opioid consumption among a cohort of patients undergoing common elective abdominal procedures. We will identify the provider characteristics in postoperative opioid prescribing practices, and design and implement a provider-directed intervention to optimize postoperative opioid prescribing. Findings will inform patients and providers regarding the risk of opioid dependence following surgery, and will establish a patient-centered data infrastructure that yields continuous feedback to providers regarding appropriate opioid prescribing practices.

3U01HL117664-05S2
CANNABINOID-BASED THERAPY AND APPROACHES TO QUANTIFY PAIN IN SICKLE CELL DISEASE Clinical Research in Pain Management NHLBI University of Minnesota GUPTA, KALPNA MINNEAPOLIS, MN 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Sickle cell disease (SCD) is an inherited hematologic disorder accompanied by severe pain, inflammation, and vascular injury. We propose that nociceptor activation by ongoing hypoxia/reperfusion (H/R) injury leads to the release of neuropeptides by sensory nerves in the skin, stimulating vascular insult and mast cell activation in SCD. In turn, mast cell tryptase activates protease-activated receptor 2 on sensory nerve endings, resulting in exaggerated neuroinflammation, vascular injury, and central sensitization. Our general hypothesis is that neurogenic inflammation contributes to pain in SCD and that cannabinoids provide analgesia by disrupting neurogenic inflammation and nociceptor sensitization. We also hypothesize that EEG and functional MRI can be used to optimize analgesic treatments in SCD. We propose to use transgenic sickle mice, and individual cells involved in evoking pain, to perform this translational study. A proof of principle study in humans will examine the effect of cannabis on pain in sickle patients.

3R01MD008931-05S1
VIRTUAL PERSPECTIVE-TAKING TO REDUCE RACE AND SES DISPARITIES IN PAIN CARE Clinical Research in Pain Management NIMHD Indiana University - Purdue University Indianapolis HIRSH, ADAM T Indianapolis, IN 2018
NOFO Title: NIMHD Social, Behavioral, Health Services, and Policy Research on Minority Health and Health Disparities (R01)
NOFO Number: RFA-MD-13-006
Summary:

Previous studies found that African American (AA) and low socioeconomic status (SES) patients are less likely to receive guideline-concordant pain care relative to White and high SES patients. According to research and theory, enhancing clinician perspective-taking is a promising strategy for improving the care of AA and low SES patients. We have developed an innovative methodology that utilizes computer-simulated patients and environments to assess, understand, and remediate pain treatment disparities. Our approach allows for the intervention to be individually tailored to each trainee, thereby enhancing its impact. It also allows for individual trainees to gain exposure to a greater range of racially and socioeconomically diverse patients than can normally be obtained in traditional training settings. We hypothesize that our perspective-taking intervention will increase trainees’ knowledge of their own biases, enhance trainees’ empathy toward patients, and reduce trainees’ anxiety/threat toward patients, and that these changes will reduce pain treatment disparities.

1R41DA050386-01
Prevention of renarcotization from synthetic opioids Cross-Cutting Research Small Business Programs NIDA CONSEGNA PHARMA, INC. AVERICK, SAADYAH Pittsburgh, PA 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

While the mu opioid receptor (MOR) antagonist naloxone has proven invaluable as an opioid overdose antidote, naloxone suffers from a very short duration of action (half-life is approximately 1 hour) and has been found to be less effective against newer, long-acting opioids, including fentanyl (half-life is approximately 7–10 hours). This leads to a highly lethal and increasingly prevalent phenomenon known as “renarcotization,” wherein an overdose patient revived with naloxone can re-enter an overdose state from residual fentanyl in the body. Thus, there is a critical need to develop a long-acting MOR antagonist formulation that can address renarcotization by providing multi-hour protection. The goal of this project is to reformulate naloxone using FDA-approved microencapsulation technology into a long-acting injectable (LAI) that can provide 12–24 hours of sustained antagonist activity in vivo. It will employ a proprietary Computational Drug Delivery™ software, called ADSR™, to perform in silico formulation optimization as well as to predict its in vitro dissolution and in vivo pharmacokinetic behavior.

1UG3DA047707-01
Nalmefene Implant for the Long-Term Treatment of Opioid Use Disorder Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA TITAN PHARMACEUTICALS, INC. BEEBE DEVARNEY, KATHERINE L South San Francisco, CA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

There is a need for an opioid use disorder (OUD) treatment that can prevent relapse in detoxified subjects. Titan's proprietary subdermal implants can provide long-term, non-fluctuating therapeutic levels of drug continuously following a single office-based insertion procedure. The non-biodegradable solid matrix implant formulation virtually eliminates the risk of accidental drug dumping and associated serious toxicity, and its subdermal location assures patient compliance for the 6-month treatment duration. Nalmefene hydrochloride (nalmefene) is an opioid receptor antagonist approved for the management and reversal of opioid overdose. Prototype nalmefene implants inserted subdermally in rats delivered nalmefene continuously for months without any observable safety concerns. This proposed study will develop a 6-month implantable device that delivers nalmefene at a steady rate to prevent relapse to opioid dependence following opioid detoxification. This project will manufacture nalmefene implants, complete nonclinical safety and pharmacology studies, and conduct clinical studies in OUD subjects to support a New Drug Application.

3UG1DA040314-04S7
Primary Care Opioid Use Disorders Treatment Trial (PROUD) Economic Analysis Study Translation of Research to Practice for the Treatment of Opioid Addiction Enhancing the National Drug Abuse Treatment Clinical Trials Network to Address Opioids NIDA KAISER FOUNDATION RESEARCH INSTITUTE CAMPBELL, CYNTHIA I; BRADLEY, KATHARINE ANTHONY Oakland, CA 2019
NOFO Title: The National Drug Abuse Treatment Clinical Trials Network (UG1)
NOFO Number: RFA-DA-15-008
Summary:

Effective treatment for OUD has been shown to improve patient outcomes and reduce health care costs; however, evidence of this effect in primary care settings is severely limited. The health economic findings from this study will supplement the parent PROUD trial’s results regarding clinical effectiveness and implementation outcomes and provide critical contextual information for health systems and other health care stakeholders. The study will evaluate the economic viability of the PROUD collaborative care model for OUD—that is, from the perspective of the health care sector, to what extent do the downstream cost savings associated with improved patient outcomes offset the additional costs of the PROUD intervention? The specific aims are to (1) estimate the start-up and ongoing management costs of the PROUD intervention, (2) assess costs associated with health care utilization for patients who receive primary care treatment in PROUD and usual care clinics and have been identified with recognized OUDs before clinic randomization, and (3) estimate the economic value of the PROUD intervention, measured as net monetary benefit (NMB, incremental benefit minus incremental cost), from the health care sector perspective.

5R01DE027454-02
Modeling temporomandibular joint disorders pain: role of transient receptor potential ion channels Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDCR Duke University Chen, Yong Durham, NC 2019
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

Masticatory and spontaneous pain associated with temporomandibular joint disorders (TMJD) is a significant contributor to orofacial pain, and current treatments for TMJD pain are unsatisfactory. Pain-related transient receptor potential (TRP) channels, expressed by trigeminal ganglion (TG) sensory neurons, have been implicated in both acute and chronic pain and represent possible targets for anti-pain strategies. Using bite force metrics, we found TMJ inflammation-induced masticatory pain to be significantly, but not fully, reversed in Trpv4 knockout mice, suggesting the residual pain might be mediated by other pain-TRPs. Our gene expression studies demonstrated that TRPV1 and TRPA1 were up-regulated in the TG in response to TMJ inflammation in a Trpv4-dependent manner. We hypothesize that TRPV1 and TRPA1, like TRPV4, contribute to TMJ pain. Our specific aims will examine the contribution of TRPV1, TRPV4, and TRPA1 to pathogenesis of TMJD pathologic pain including assessment of the role of neurogenic inflammation.

1U01DK123813-01
UPENN Scientific and Data Research Center for the HOPE Consortium to Reduce Pain and Opioid Use in Hemodialysis Clinical Research in Pain Management Integrated Approach to Pain and Opioid Use in Hemodialysis Patients NIDDK UNIVERSITY OF PENNSYLVANIA DEMBER, LAURA M (contact); FARRAR, JOHN T; KAMPMAN, KYLE MATTHEW; LANDIS, J RICHARD Philadelphia, PA 2019
NOFO Title: HEAL Initiative: Integrated Approach to Pain and Opioid Use in Hemodialysis Patients: The Hemodialysis Opioid Prescription Effort (HOPE) Consortium - Scientific and Data Research Center (U01 Clinical Trial Required)
NOFO Number: RFA-DK-18-031
Summary:

The University of Pennsylvania Perelman School of Medicine serves as the Scientific and Data Research Center (SDRC) for the Hemodialysis Opioid Prescription Effort (HOPE) Consortium. Specifically, the SDRC will 1) provide scientific leadership for the HOPE Consortium clinical trial; 2) provide comprehensive operational support to the Clinical Centers for implementing the collaboratively designed trial protocol; 3) develop and lead a Stakeholder Engagement Working Group; 4) integrate and analyze data from the electronic health records of the participating Clinical Centers; 5) establish, promote, and maintain consortium-wide high standards for quality assurance and practices; 6) initiate and oversee contracts with industry partners; 7) prepare reports for the Data and Safety Monitoring Board, and support the preparation of Consortium reports of scientific findings; 8) prepare, document, and transfer Consortium data and biosamples to a Central Repository; and 9) develop approaches for disseminating the trial findings to diverse stakeholders.

3UG1DA013714-17S3
Preventing and Identifying Opioid Use Disorder (OUD) Using the Six Building Blocks (6BBs) for Improving Opioid Prescription Management Translation of Research to Practice for the Treatment of Opioid Addiction Enhancing the National Drug Abuse Treatment Clinical Trials Network to Address Opioids NIDA University of Washington DONOVAN, DENNIS; HATCH-MAILLETTE, MARY AKIKO SEATTLE, WA 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

This project seeks to develop and test a “train-the-trainer” curriculum and training experience that will facilitate the spread and use of the 6BBs by adapting the 6BBs framework and toolkit for health systems and other organizations, training personnel to facilitate its implementation and monitoring results of this implementation.

1UG3DA050251-01
A digital intervention to prevent the initiation of opioid misuse in adolescents in school-based health centers New Strategies to Prevent and Treat Opioid Addiction Preventing Opioid Use Disorder NIDA Yale University Fiellin, Lynn E. New Haven, CT 2019
NOFO Title: HEAL Initiative: Preventing Opioid Use Disorder in Older Adolescents and Young Adults (ages 16–30) (UG3/UH3 Clinical Trial Required
NOFO Number: RFA-DA-19-035
Summary:

Most opioid misuse begins during adolescence and young adulthood. Adolescence is the best time for prevention interventions in settings like school-based health centers (HCs), yet few programs focus on preventing initiation of opioid misuse. This study harnesses the power of video game interventions and incorporates components of effective substance use prevention programs to develop an evidence-informed intervention to prevent the initiation of opioid misuse in adolescents. In partnership with the national School-Based Health Alliance (SBHA), researchers will develop and test a new video game intervention, PlaySmart. It will build on our previous video game intervention that has demonstrated efficacy in improving attitudes and knowledge related to risk behaviors. The study will evaluate the game in a randomized controlled trial (RCT) in 10 school-based HCs and examine strategies for implementing PlaySmart in school-based HCs nationally. This research has considerable potential for wide implementation, reach, and impact on high-risk adolescents through school-based HCs.

1UG3NS114947-01
Novel HCN1-selective small molecule inhibitors for the treatment of neuropathic pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS WEILL MEDICAL COLL OF CORNELL UNIV GOLDSTEIN, PETER A New York, NY 2019
NOFO Title: Optimization of Non-addictive Therapies [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-19-010
Summary:

Neuropathic pain is characterized by neuronal hyperexcitability and spontaneous activity, properties associated with activity of hyperpolarization-activated, cyclic nucleotide-regulated (HCN1-4) channels, the source of the pacemaker current, Ih. Inhibition of HCN1-mediated Ih elicits marked antihyperalgesia in multiple animal models of neuropathic pain, including models for direct nerve injury and chemotherapy-induced peripheral neuropathy, and does so with little or no disruption to either normal pain processing or baseline behaviors and activities. The overall objective is to develop a peripherally restricted HCN1 inverse-agonist as a therapeutic for neuropathic pain. Researchers have generated a novel small molecule that combines an antihyperalgesic HCN1 inhibitor with a motif that controls distribution and membrane presentation and is a potential non-opioid antihyperalgesic treatment for peripheral neuropathic pain.

1R34DA050299-01
Florida Development in Early Childhood: Adversity and Drug Exposure (FL-DECADE) Study Enhanced Outcomes for Infants and Children Exposed to Opioids HEALthy Brain and Child Development Study (HBCD) NIDA UNIVERSITY OF FLORIDA GURKA, MATTHEW JAMES Gainesville, FL 2019
NOFO Title: HEAL Initiative: HEALthy Brain and Child Development Study (HEALthy BCD) (R34 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-19-036
Summary:

This study will determine the feasibility of a multifaceted approach to recruitment of normal and high-risk pregnant women and their children. Three inter-related tasks will support this comprehensive feasibility study. First, an interdisciplinary summit will occur early in the study focused on how best to mitigate risks and maximize benefits to children and families recruited in a future cohort. Second, the feasibility of a multi-faceted recruitment strategy will be assessed. Third, select pregnancy and birth assessments will be collected from recruited participants in this feasibility study while leveraging data across early childhood from existing resources, to inform Phase II study planning. This Phase I of the FL-DECADE study will provide valuable planning and feasibility data to be used for the national efforts to build a large, prospective cohort.

3P50MH113662-01A1S1
Accelerator Strategies for States to Improve System Transformations Affecting Children Youth and Families New Strategies to Prevent and Treat Opioid Addiction Preventing Opioid Use Disorder NIMH NYU School of Medicine Hoagwood, Kimberly; McKay, Mary New York, NY 2019
NOFO Title: Advanced Laboratories for Accelerating the Reach and Impact of Treatments for Youth and Adults with Mental Illness (ALACRITY) Research Centers (P50 Clinical Trial Optional)
NOFO Number: PAR-18-701
1R43DE029369-01
A Novel Opioid-Free Targeted Pain Control Method for Acute Post-Operative Localized Pain Related to Oral Surgical Procedures Cross-Cutting Research Small Business Programs NIDCR LAUNCHPAD MEDICAL, LLC JADIA, RAHUL; KAY, GEORGE Boston, MA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

There is a compelling need to develop a front line, non-opioid-based acute pain management strategy for outpatient oral surgical procedures. LaunchPad Medical has developed Tetranite® (TN), a novel bone regenerative mineral-organic self-setting adhesive biomaterial. TN has been extensively studied in vivo in a canine jaw model and shown to be effective and well-tolerated. In this project, researchers will demonstrate that drug-loaded TN can be a novel route to providing localized and time release pain medication following wisdom tooth extraction by determining the release profile of various pain medications from TN at different concentrations. The ability to release pain therapeutics in a controlled fashion and directly at the site of injury offers improved pain control following oral surgical procedures without exposing the patient to opioids. This novel approach to pain management can be extended to more invasive orthopedic procedures such as joint replacement, spinal fusions or reconstructive trauma surgery. In Phase II the team will conduct an in vivo study to assess efficacy of medicated TN to address post-operative pain following wisdom tooth odontectomy, optimize incorporation and release of medications in TN formulations, develop cGMP manufacturing process for the compounded product, and ultimately conduct clinical trials for bone void filler using medicated TN.

1R43DA049300-01A1
PRAPELA™ SVS: A COST-EFFECTIVE STOCHASTIC VIBROTACTILE STIMULATION DEVICE TO IMPROVE THE CLINICAL COURSE OF INFANTS WITH NEONATAL ABSTINENCE SYNDROME Cross-Cutting Research Small Business Programs NIDA PRAPELA, Inc. KONSIN, JOHN PHILLIP (contact); SINGH, RACHANA Concord, MA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

Maternal use and addiction to opioids or other drugs has resulted in an unprecedented rise in drug withdrawal complications in newborns known as neonatal abstinence syndrome (NAS). While there is no accepted standard for treating NAS, non-pharmacological bundles are recommended as an initial course of treatment. Unfortunately, non-pharmacological care (swaddling, rocking, frequent feedings, and skin contact) require significant use of human resources. This project studies the technical feasibility of a stochastic vibrotactile stimulation (SVS) technology incorporated into the hospital bassinet pad, which provides gentle vibrating sensory stimulation to soothe infants with NAS. Building on preliminary evidence that this type of stimulation calms NAS infants without altering their sleep, this study aims to develop a commercially viable bassinet pad that could be used in a hospital setting.

1R34DA050262-01
1/5 Establishing Innovative Approaches for the HEALthy Brain and Child Development Study Enhanced Outcomes for Infants and Children Exposed to Opioids HEALthy Brain and Child Development Study (HBCD) NIDA UNIV OF NORTH CAROLINA CHAPEL HILL LIN, WEILI (contact); GILMORE, JOHN HORACE; GREWEN, KAREN M; JONES, HENDREE E Chapel Hill, NC 2019
NOFO Title: HEAL Initiative: HEALthy Brain and Child Development Study (HEALthy BCD) (Collaborative R34 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-19-029
Summary:

A more than 5-fold increase in the incidence of neonatal abstinence syndrome has been reported since 2000. Preliminary studies show that prenatal opioid exposure is associated with increased risk of impaired neurodevelopment. Five institutions (Duke University, Arkansas Children’s Research Institute, Cincinnati Children’s Hospital, University of Illinois at Urbana–Champaign, and University of North Carolina at Chapel Hill) have formed a consortium to develop strategies for the Phase II HEALthy Brain and Child Development Study. Research teams will develop instruments and strategies (recruitment/retention protocols, assessment batteries, and novel tools); conduct pilot studies (fetal and postnatal imaging, advanced imaging harmonization and quality control, assessment administration, biosampling) to evaluate instruments; and analyze available data, including imaging, behavioral, cognitive, and maternal data from studies on early brain development, to guide the Phase II study design. Upon completion, the consortium aims to conduct the Phase II study.

1UH2AR076724-01
Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF CALIFORNIA, SAN FRANCISCO MAJUMDAR, SHARMILA San Francisco, CA 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

Despite the significance of spine disorders, there are few reliable methods to determine appropriate patient care and evaluate intervention effectiveness. The research and tool development take the critical next step in the clinical translation of faster, quantitative magnetic resonance imaging (MR) of patients with lower back pain. The multidisciplinary Technology Research Site (Tech Site) of BACPAC will develop Phase IV (i.e., technology optimization) technologies and/or methods (TTMs) to leverage two key technical advancements: development of machine learning-based, faster MR acquisition methods and machine learning for image segmentation and extraction of objective disease related features from images. The team will develop, validate, and deploy end-to-end deep learning-based technologies (TTMs) for accelerated image reconstruction, tissue segmentation, and detection of spinal degeneration to facilitate automated, robust assessment of structure-function relationships between spine characteristics, neurocognitive pain response, and patient-reported outcomes.