Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Sort descending Institution(s) Investigator(s) Location(s) Year Awarded
1UG3NS134781-01
A novel glycan-based selectin and complement inhibitor for at-home disease-modifying rescue of pain crisis in sickle cell disease Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS IHP THERAPEUTICS, INC. PADERI, JOHN San Carlos, CA 2023
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
1R44NS113749-01
Micronized salsalate in a parenteral formulation is a safe and effective analgesic for acute postoperative pain management Cross-Cutting Research Small Business Programs NINDS RH NANOPHARMACUETICALS L.L.C. ROSS, JOEL STEVEN Monmouth Beach, NJ 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

There is an unmet need for an effective parenteral/oral analgesic for acute post- operative pain management without the risks of opioid addiction. Salsalate, a dimer or salicylic acid, is currently available in oral dosage for the treatment of osteoarthritis and rheumatoid arthritis. Salsalate works at multiple levels to target multiple steps along the surgical pain pathway. Salsalate through its active metabolite, salicylic acid (SA), reduces NF-?B activation via IKK-kinase beta inhibition, and has no direct binding to cyclooxygenase 1 (Cox-1); therefore, does not affect function of platelets, resulting in a safer hematological and gastrointestinal safety profile. RH Nano proposes a plan for manufacturing and pre- clinical testing of parenteral M-salsalate in two animal models to assess the efficacy and safety in the treatment of acute postoperative pain management. In this proposal, the team will develop the optimal formulation under strict Chemistry Manufacturing and Control guidelines. In Phase II, the team proposes to conduct the pharmacokinetics and toxicology studies of M-salsalate in two species of animals (rodent and non-rodent). Additionally, the project will use an animal pain model for preclinical efficacy studies, and an in vivo Receptor Occupancy assay in animal brain tissues to assess the opioid sparing properties of M-salsalate. 

1UG3NS114956-01
Optimization of non-addictive biologics to target sodium channels involved in pain signaling Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS UNIVERSITY OF CALIFORNIA AT DAVIS YAROV-YAROVOY, VLADIMIR M Davis, CA 2019
NOFO Title: Optimization of Non-addictive Therapies [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-19-010
Summary:

Pain signals originate predominantly in a subset of peripheral sensory neurons that harbor a distinct subset of voltage-gated sodium (NaV) channels; however, current NaV channel blockers, such as local anesthetics, are non-selective and also block NaV channels vital for function of the heart, muscle, and central nervous system. Genetic studies have identified human NaV1.7, NaV1.8, and NaV1.9 channel subtypes as key players in pain signaling and as major contributors to action potential generation in peripheral neurons. ProTx-II is a highly potent and moderately selective peptide toxin that inhibits human NaV1.7 activation. This study will optimize ProTx-II selectivity, potency, and stability by exploiting the new structures of ProTx-II—human NaV1.7 channel complexes, advances in rational peptide optimization, and rigorous potency and efficacy screens to generate high-affinity, selective inhibitors of human NaV1.7, NaV1.8, and NaV1.9 channels that can define a new class of biologics to treat pain.

1R41NS127637-01A1
Protease-Activated-Receptor-2 Antagonists for Treatment of Migraine Pain Cross-Cutting Research Small Business Programs NINDS PARMEDICS, INC. DEFEA, KATHRYN (contact); DUSSOR, GREGORY O Temecula, CA 2023
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R41/R42 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-009
Summary:

There is a need for additional effective treatments for migraine, which affects more than 36 million people in the United States. This project will develop an oral medication to disrupt the biological processes that drive migraine pain, which include nerve inflammation in response to pain signals. 

1R43NS112088-01A1
Repression of Sodium Channels via a Gene Therapy for Treatment of Chronic Neuropathic Pain Cross-Cutting Research Small Business Programs NINDS NAVEGA THERAPEUTICS, INC. MORENO, ANA MARIA; ALEMAN GUILLEN, FERNANDO San Diego, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

Voltage-gated sodium channels are responsible for the transmission of pain signals. Nine genes have been identified, each having unique properties and tissue distribution patterns. Genetic studies have correlated a hereditary loss-of-function mutation in one human Na+ channel isoform – ?Na?V?1.7 – with a rare genetic disorder known as Congenital Insensitivity to Pain (CIP). Individuals with CIP are not able to feel pain without any significant secondary alteration. Thus, selective inhibition of ?Na?V?1.7 in normal humans could recapitulate the phenotype of CIP. This research team developed a non-permanent gene therapy to target pain that is non-addictive (because it targets a non-opioid pathway), highly specific (only targeting the gene of interest), and long-term lasting (around 3 weeks in preliminary assays in mice). During this Phase I , the team will 1) test additional pain targets ?in vitro?, and 2) evaluate the new targets ?in vivo ?in mice models of inflammatory and neuropathic pain. 

1R01AR077890-01
Validation of Novel Target for OA Treatment Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF ILLINOIS AT CHICAGO SAMPEN, HEE-JEONG IM; LASCELLES, DUNCAN Chicago, IL 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Osteoarthritis (OA) is the most common form of arthritis and a leading cause of pain and disability. Current challenges of managing OA are that there is no OA disease-modifying drug available, there are few effective treatment strategies, and there is an over-reliance on the use of opioids to manage OA-related joint pain. This project aims to validate vascular endothelial growth factor receptors 1 and 2 (VEGFR 1 receptor = Flt1) and (VEGFR 2 receptor = Flk1) as novel therapeutic targets for OA. This is based on a hypothesis that blocking these two specific receptors of VEGF will inhibit cartilage tissue degeneration and alleviate pain symptoms. This study will test the role of VEGFR-1 and -2 in multiple OA animal models using multiple available VEGF inhibitor molecules. The findings from these studies will develop a rationale for future clinical trials to target VEGFR-1 and -2 for OA patients and develop a novel non-addictive treatment for both joint pain and OA pathology.

1R34NS126030-01
Profiling the human gut microbiome for potential analgesic bacterial therapies Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS HOLOBIOME, INC. STRANDWITZ, PHILIP PETER (contact); GILBERT, JACK ANTHONY Cambridge, MA 2021
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development Initial Translational Efforts [Small Molecules and Biologics] (R34 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-21-016
Summary:

Disruptions in make-up of the microbiome are associated with disorders characterized by chronic pain and inflammation, such as rheumatoid arthritis and fibromyalgia. The gut microbiome has immune and metabolic effects, and human gut-derived bacteria may be a source of novel, safe, and non-addictive pain treatments. However, connections between gut and pain signals, known as the “gut–pain axis,” are still poorly understood. This study aims to identify human-gut-native bacteria that i) interact with known pain targets in lab studies, ii) test their activity and analgesic/anti-inflammatory potential in an animal model, and iii) develop a computational approach to predict microbial-genetic effects on pain signals.

4R33NS113315-02
Biomarker Signature to Predict the Persistence of Post-Traumatic Headache Clinical Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS MAYO CLINIC ARIZONA CHONG, CATHERINE DANIELA Scottsdale, AZ 2023
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
1UH3NS115631-01
Multisite adaptive brain stimulation for multidimensional treatment of refractory chronic pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS UNIVERSITY OF CALIFORNIA, SAN FRANCISCO SHIRVALKAR, PRASAD San Francisco, CA 2019
NOFO Title: HEAL Initiative: Clinical Devices to Treat Pain (UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-19-018
Summary:

The research team will develop stimulation control algorithms to treat chronic pain using a novel device that allows longitudinal intracranial signal recording in an ambulatory setting. Subjects with refractory chronic pain syndromes will undergo bilateral surgical implant of temporary electrodes in the thalamus, anterior cingulate, prefrontal cortex, insula, and amygdala to identify candidate biomarkers of pain and optimal stimulation parameters. Six patients will proceed to chronic implantation of “optimal” brain regions for long-term recording and stimulation. The team will first validate biomarkers of low- and high-pain states to define neural signals for pain prediction in individuals. They will then use these pain biomarkers to develop personalized closed-loop algorithms for deep-brain stimulation (DBS) and test the feasibility of closed-loop DBS for chronic pain in weekly blocks. Researchers will assess the efficacy of closed-loop DBS algorithms against traditional open-loop DBS or sham in a double-blinded cross-over trial and measure mechanisms of DBS tolerance.

1R41NS118992-01
Development of selective calpain-1 inhibitors for chronic pain Cross-Cutting Research Small Business Programs NINDS 1910 GENETICS, INC. NWANKWO, JENNIFER Cambridge, MA 2021
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: NS-20-011
Summary:

The need to develop non-opioid therapeutics for chronic pain is greater than ever.  One option being explored is inhibiting the activity of calpains – enzymes that have been shown to cause pain in animal models of chronic pain.  Using an artificial intelligence (AI)-driven drug discovery platform, researchers have uncovered and validated four calpain-1 inhibitors using biochemical assays.  This study by 1910 Genetics Inc. hopes to synthesize multiple analogs of its most potent discovered calpain-1 inhibitor and determine its effectiveness against calpain-2 and certain enzymes that break down proteins.  Findings that successfully significantly inhibit calpain-1 in at least one animal model of chronic pain could lead to the first oral, central nervous system penetrating selective calpain-1 inhibitor [non-opioid therapeutic] for chronic pain.

1UG3NS128439-01
Allosteric Targeting of Cannabinoid CB1 Receptor to Develop Non-Addictive Small Molecule Analgesics Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS Texas A&M Health Science Center LU, DAI (contact); SELLEY, DANA E; TAO, FENG College Station, TX 2022
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
Summary:

Overreliance on opioids to treat chronic pain has been a contributor to the increase in individuals experiencing opioid addiction. This project aims to develop an innovative treatment approach for chronic pain that targets the cannabinoid receptor 1 (CB1R) to block the sensation of pain. The approach seeks to identify molecules that interact with a different part of the CBR1 receptor than do endocannabinoids and the primary active component of cannabis, tetrahydrocannabinol. Molecules that bind to and activate CBR1 in this different way (at an “allosteric” site) may produce nerve signaling that might differ from the effects of cannabis and endocannabinoids. This redirection of signaling pathways could help eliminate the risk of adverse effects observed with natural cannabinoids and other CBR1-binding molecules. The goal of this project is to identify a CB1R allosteric molecule, conduct studies toward obtaining federal permission to develop it as a medication, and to test it in a Phase I clinical study.

3U24NS112873-04S3
Clinical Coordinating Center for the Acute to Chronic Pain Signatures Program Cross-Cutting Research Increasing Participant Diversity, Inclusion, and Engagement in HEAL Research NINDS UNIVERSITY OF IOWA SLUKA, KATHLEEN A (contact); COFFEY, CHRISTOPHER S; FREY LAW, LAURA A Iowa City, IA 2022
NOFO Title: HEAL Initiative: Notice of Special Interest (NOSI) regarding the Availability of Administrative Supplements to Support Strategies to Increase Participant Diversity, Inclusion and Engagement in Clinical Studies
NOFO Number: NOT-NS-22-066
Summary:

This research aims to define factors involved in the transition from acute to chronic pain, toward reducing opioid use and discovering new, non-addictive pain treatments. This project will develop recruitment efforts to engage a diverse patient population in clinical research that results from new findings about the transition from acute to chronic pain. The project will use focus groups, led by experts in health equity and implementation research, and patient navigators to enhance recruitment of diverse research participants.

1U19NS135528-01
The Penn Human Precision Pain Center (HPPC): Discovery and Functional Evaluation of Human Primary Somatosensory Neuron Types at Normal and Chronic Pain Conditions Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF PENNSYLVANIA LUO, WENQIN (contact); LI, MINGYAO; OLAUSSON, HÅKAN; WU, HAO Philadelphia, PA 2023
NOFO Title: HEAL Initiative: Discovery and Functional Evaluation of Human Pain-associated Genes & Cells (U19 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-22-018
Summary:

Migraine is one of the most common primary headache disorders and affects one in four U.S. households; however, there are few effective treatments. Migraine is a complex neurological disorder mediated in part by alterations in the way the brain processes sensations like touch and pain (somatosensation) in the head. These sensations are transmitted by the trigeminal nerve and a cell cluster called the trigeminal ganglion. To better understand the function of the human trigeminal system and its role in migraine, this project will conduct multiple types of molecular analyses of human trigeminal ganglia from people with and without migraine. The project will also perform sensory evaluations and measure the signals sent from the trigeminal ganglion to the brain in individuals with and without migraine.

1UG3NS114947-01
Novel HCN1-selective small molecule inhibitors for the treatment of neuropathic pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS WEILL MEDICAL COLL OF CORNELL UNIV GOLDSTEIN, PETER A New York, NY 2019
NOFO Title: Optimization of Non-addictive Therapies [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-19-010
Summary:

Neuropathic pain is characterized by neuronal hyperexcitability and spontaneous activity, properties associated with activity of hyperpolarization-activated, cyclic nucleotide-regulated (HCN1-4) channels, the source of the pacemaker current, Ih. Inhibition of HCN1-mediated Ih elicits marked antihyperalgesia in multiple animal models of neuropathic pain, including models for direct nerve injury and chemotherapy-induced peripheral neuropathy, and does so with little or no disruption to either normal pain processing or baseline behaviors and activities. The overall objective is to develop a peripherally restricted HCN1 inverse-agonist as a therapeutic for neuropathic pain. Researchers have generated a novel small molecule that combines an antihyperalgesic HCN1 inhibitor with a motif that controls distribution and membrane presentation and is a potential non-opioid antihyperalgesic treatment for peripheral neuropathic pain.

1UG3NS131518-01
Anesthetic-Eluting Contact Lens for Corneal Pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS SCHEPENS EYE RESEARCH INSTITUTE CIOLINO, JOSEPH Boston, MA 2023
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
Summary:

Acute corneal pain from eye injury or surgery can be severe and debilitating, and oral opioids can be addictive. Anesthetic eye drops, such as tetracaine, can relieve corneal pain, but are only available by prescription due to potential overuse of the drops that may affect wound healing. To date, no ocular anesthetics are approved by the U.S. Food and Drug Administration for use at home. This project aims to develop a bandage that delivers anesthetic to the eye through a specially designed contact lens filled with medication. A prototype version of the bandage lens in an animal model delivered up to 30 hours of eye pain relief without wound damage. This research will optimize the prototype version and evaluate safety and compatibility with the human body, toward future clinical testing in humans. 

1RM1NS128956-01A1
Mechanisms of Action of Peripheral Nerve Stimulation for the Treatment of Chronic Neuropathic Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS STANFORD UNIVERSITY HAH, JENNIFER (contact); BISWAL, SANDIP; CHADWICK, ANDREA LYNN Stanford, CA 2023
NOFO Title: HEAL Initiative: Interdisciplinary Team Science to Uncover the Mechanisms of Pain Relief by Medical Devices (RM1 Clinical Trial Optional)
NOFO Number: RFA-NS-23-003
Summary:

Technology approaches that deliver electrical current through the skin near a damaged or injured peripheral nerve are used to treat chronic neuropathic pain that does not respond to other treatments. This project will optimize this nerve stimulation approach while also determining how the stimulation works to reduce pain in the body. The research will also look for patient characteristics that predict response by conducting a clinical trial comparing combined peripheral nerve stimulation and conventional medical treatment to medication alone.

1UG3NS135551-01
Translating an MR-guided focused ultrasound system for first-in-human precision neuromodulation of pain circuits Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS VANDERBILT UNIVERSITY MEDICAL CENTER CASKEY, CHARLES F (contact); CHEN, LI MIN Nashville, TN 2023
NOFO Title: Blueprint MedTech Translator (UG3/UH3 - Clinical Trial Optional)
NOFO Number: PAR-21-315
1R41NS115460-01
Minimally Invasive Intercostal Nerve Block Device to Treat Severe Pain and Reduce Usage of Opiates Cross-Cutting Research Small Business Programs NINDS TAI, CHANGFENG; POPIELARSKI, STEVE THERMAQUIL, INC. Philadelphia, PA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Technology Transfer Grant Applications (Parent STTR [R41/R42] Clinical Trial Not Allowed)
NOFO Number: PA-18-575
Summary:

Most of the 200k Americans who undergo thoracotomy each year receive opiates to reduce postoperative pain because clinicians have few non-addictive, cost-effective choices to control the severe pain patients often experience in the first two weeks after surgery. Managing pain post-thoracotomy is critical to enable patients to take deep breaths and remove (via coughing) lung secretions that otherwise significantly increase risk of pneumonia and collapsed lung, hospital re-admission and morbidity. The most severe pain associated with thoracotomy is transmitted along the intercostal nerves, but no long-term analgesic or nerve block device exists that can provide safe and effective long-term reduction of pain. A reversible, patient-controlled, non- addictive, intercostal nerve block device would reduce suffering due to thoracotomy, broken ribs and herpes zoster. In this Phase I project, the team will develop a minimally invasive thermal nerve block device that can control nerve conduction by gently warming and cooling a short nerve segment between room temperature and warm water temperature. This novel approach is based on the discovery that warm and cool temperature mechanisms of nerve block are different and additive, enabling moderate-temperature nerve block by cycling neural tissues slightly above and below body temperature. Reversible thermal nerve blocks represent a completely new approach to managing pain.  

1RM1NS128775-01
Defining Mechanisms of Pain Relief Associated with Dorsal Root Ganglion and Spinal Cord Stimulation Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS University of Pittsburgh KOERBER, H RICHARD (contact); LEMPKA, SCOTT F; WEBER, DOUGLAS J Pittsburgh, PA 2022
NOFO Title: HEAL Initiative: Interdisciplinary Teams to Elucidate the Mechanisms of Device-Based Pain Relief (RM1 Clinical Trial Optional)
NOFO Number: NS22-016
Summary:

Chronic pain is a debilitating condition for which there is a pressing need for safe, effective treatments. Neurostimulation therapies that target nerve structures such as the dorsal root ganglion (DRG) and the spinal cord, have shown promising results for treating chronic pain, but researchers don’t know how they work. This project focuses on two prevailing models used to explain the therapeutic effects of neurostimulation: the gate-control model in which pain signals are blocked from reaching the brain and the T-junction filtering model in which pain signals are blocked from reaching the spinal cord. Strategies will include innovative behavioral, electrophysiological, imaging, and computational modeling techniques. The results of these studies will help explain why neurostimulation therapies work and potentially offer new treatment strategies for improved pain relief.

1R01NS113257-01
Discovery and validation of a novel orphan GPCR as a target for therapeutic intervention in neuropathic pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS St. Louis University SALVEMINI, DANIELA St. Louis, MO 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Neuropathic pain conditions are exceedingly difficult to treat, and novel non-opioid analgesics are desperately needed. Receptomic and unbiased transcriptomic approaches recently identified the orphan G-protein coupled receptor (oGPCR), GPR160, as a major oGPCR whose transcript is significantly increased in the dorsal horn of the spinal cord (DH-SC) ipsilateral to nerve injury, in a model of traumatic nerve-injury induced neuropathic pain caused by constriction of the sciatic nerve in rats (CCI). De-orphanization of GPR160 led to the identification of cocaine- and amphetamine-regulated transcript peptide (CARTp) as a ligand which activates pathways crucial to persistent pain sensitization. This project will test the hypothesis that CARTp/GPR160 signaling in the spinal cord is essential for the development and maintenance of neuropathic pain states. It will also validate GPR160 as a non-opioid receptor target for therapeutic intervention in neuropathic pain, and characterize GPR160 coupling and downstream molecular signaling pathways underlying chronic neuropathic pain.

1R01NS118504-01
Targeting GPCRs in Amygdalar and Cortical Neural Ensembles to Treat Pain Aversion Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIV OF NORTH CAROLINA CHAPEL HILL SCHERRER, GREGORY Chapel Hill, NC 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

There is a distinct neural ensemble in the brain that encodes the negative affective valence of pain. This project will identify novel targets to treat pain by determining the molecular identity of these BLA nociceptive cells via in situ hybridization and single cell RNAsequencing (scRNA-seq). Resolving the molecular identity of these ACC nociceptive cells will also reveal new targets to treat pain affect. To achieve these results the project will catalog candidate Gi/o-GPCR targets in BLA and ACC, test their utility to treat pain, and verify these new targets have no effect in the brain?s reward and breathing circuitry. The experiments in this project will also evaluate each target for abuse potential and effects on breathing by using behavioral assays for reward processing and whole-body plethysmography, respectively. To evaluate whether our results in rodents are likely to translate clinically, there will be an analysis of expression patterns of these drug targets in human tissue using in situ hybridization.

3U44NS115692-01S1
Development and Optimization of MNK Inhibitors for the Treatment of Neuropathic Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS 4E THERAPEUTICS INC. SAHN, JAMES JEFFREY Austin, TX 2020
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008
Summary:

There is an urgent unmet need for more efficacious analgesics that act via a non-opioid pathway. Mitogen Activated Protein Kinase-interacting kinase 2 (MNK2) is an enzyme that has been implicated in pain signaling, and there is compelling evidence that inhibiting MNK2 has significant pain-reducing effects with few side-effects. Since MNK2 selective inhibitors have not yet been identified, selective inhibition of MNK2 with a small molecule has not been possible. The development of such compounds will enable studies that will illuminate key differences between MNK2 and MNK1. More importantly, from a therapeutic standpoint, highly selective MNK2 inhibitors may prove to have enhanced efficacy and a more favorable side-effect profile than molecules that inhibit both MNK2 and MNK1. This project will support the design and synthesis of at least one MNK2 inhibitor, with >100-fold selectivity over MNK1, that may be developed into a lead compound for treating neuropathic pain.

1R34NS126032-01
Stem cell-loaded microgels to treat discogenic low back pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS CEDARS-SINAI MEDICAL CENTER SHEYN, DMITRIY Los Angeles, CA 2021
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development Initial Translational Efforts [Small Molecules and Biologics] (R34 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-21-016
Summary:

Pain caused by the degeneration of discs between vertebrae in the spine makes up a significant proportion of all chronic low back pain conditions. Although opioids are prescribed as treatments for this chronic condition, they often do not provide effective pain management, and currently there are no treatments that target the underlying disc disease. Notochordal cells mature into the cells that make up discs between vertebrae. Preliminary studies have shown that notochordal cells can be made from induced pluripotent stem cells, offering a potential replacement for diseased cells between discs. This study aims to develop a novel treatment for painful disc degeneration using a microgel/microtissue embedded with human notochordal cells made in the lab from induced pluripotent stem cells.

4R33NS113258-02
Multi-Omic Biomarkers for Neuropathic Pain Secondary to Chemotherapy Clinical Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS CLEVELAND CLINIC LERNER COM-CWRU ROTROFF, DANIEL (contact); FOSS, JOSEPH F; JOHNSON, KENWARD B Cleveland, OH 2023
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
1R43NS120335-01
Closed-Loop Micromagnetic Neuromodulation as a Non-Opioid Treatment for Neuropathic Pain Cross-Cutting Research Small Business Programs NINDS QUANTUM NANOSTIM REILLY, THOMAS Treasure Island, FL 2021
NOFO Title: HEAL Initiative: Development of Therapies and Technologies Directed at Enhanced Pain Management (R43/R44 – Clinical Trial Not Allowed)
NOFO Number: RFA-NS-20-011
Summary:

Spinal cord stimulation (SCS) has been shown to provide effective relief for most people with chronic pain and eliminated the need for opioid therapy in more than half of those treated. However, traditional SCS approaches have encountered problems when glial cells coat the stimulation electrodes that distance the device from targeted neurons. This project will develop a novel hybrid Closed Loop Omnidirectional Neuromodulation with Electromagnetic fields (CLONE) system that is combined with magnetic-based stimulation to overcome glial coating of SCS electrodes, better target neurons in dorsal spine tissue, which may lead to better treatment of chronic neuropathic neck and low back pain.