Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Year Awarded
1UG3TR003148-01
Multi-organ-on-chip device for modeling opioid reinforcement and withdrawal, and the negative affective component of pain: a therapeutic screening tool. Preclinical and Translational Research in Pain Management Translational Research to Advance Testing of Novel Drugs and Human Cell-Based Screening Platforms to Treat Pain and Opioid Use Disorder NCATS UNIVERSITY OF CALIFORNIA LOS ANGELES MAIDMENT, NIGEL T (contact); ASHAMMAKHI, NUREDDIN ; SEIDLITS, STEPHANIE KRISTIN; SVENDSEN, CLIVE NIELS Los Angeles, CA 2019
NOFO Title: HEAL Initiative: Tissue Chips to Model Nociception, Addiction, and Overdose (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-TR-19-003
Summary:

Researchers will develop multi-organ, microphysiological systems (MPSs) based on human induced pluripotent stem cell-derived midbrain-fated dopamine (DA)/gamma-aminobutyric acid neurons on a three-dimensional platform that incorporates microglia, blood–brain barrier (BBB), and liver metabolism. RNA sequencing and metabolomics analyses will complement the primary DA release measure to identify novel mechanisms contributing to chronic opioid-induced plasticity in DA responsiveness. The chronic pain-relevant aspect of the model will be realized by examination of aversive kappa-mediated opioid effects on DA transmission in addition to commonly abused mu opioid receptor agonists, and by incorporation of inflammatory-mediating microglia. Incorporation of BBB and liver metabolism modules into the microphysiologic system platform will permit screening of drugs. Throughput will be increased by integration of online sensors for online detection of DA and other analytes. Researchers will use a curated set of 100 chemical genomics probes.

1UH2AR076724-01
Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF CALIFORNIA, SAN FRANCISCO MAJUMDAR, SHARMILA San Francisco, CA 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

Despite the significance of spine disorders, there are few reliable methods to determine appropriate patient care and evaluate intervention effectiveness. The research and tool development take the critical next step in the clinical translation of faster, quantitative magnetic resonance imaging (MR) of patients with lower back pain. The multidisciplinary Technology Research Site (Tech Site) of BACPAC will develop Phase IV (i.e., technology optimization) technologies and/or methods (TTMs) to leverage two key technical advancements: development of machine learning-based, faster MR acquisition methods and machine learning for image segmentation and extraction of objective disease related features from images. The team will develop, validate, and deploy end-to-end deep learning-based technologies (TTMs) for accelerated image reconstruction, tissue segmentation, and detection of spinal degeneration to facilitate automated, robust assessment of structure-function relationships between spine characteristics, neurocognitive pain response, and patient-reported outcomes.

1R43NS113726-01
Pharmacokinetic and toxicology studies of AYX2, a transcription factor decoy, non-opioid, disease modifying drug candidate for the long-term treatment of chronic pain Cross-Cutting Research Small Business Programs NINDS ADYNXX, INC. MAMET, JULIEN San Francisco, CA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

Chronic focal neuropathic pain, which includes pain etiologies such as radiculopathy and radiculitis, focal peripheral neuropathies, and low back pain, affects as many as 25 million patients annually in the United States. Chronic focal neuropathic pain is maintained by genome-wide transcription regulation in the dorsal root ganglia (DRG) / spinal cord network. The transcription factors driving this regulation constitute a promising class of targets with the potential to alter the course of pain with a single treatment. DNA decoys are oligonucleotides that specifically inhibit the activity of certain transcription factors. AYX2 binds and inhibits Krüppel-like transcription factors (KLF) in the DRG-spinal cord. The goal of this Phase 1 proposal is to advance AYX2 toward an IND submission, allowing for human clinical trials. We propose in Aim 1 to characterize AYX2 pharmacokinetics in the cerebrospinal fluid and plasma and its distribution in the DRG, spinal cord and brain following an IT injection. With this information, AYX2 will be tested in a panel of complementary toxicology studies in Aim 2 to allow for final IND-enabling studies, supported by Phase 2 of the grant. This research will accelerate development of AYX2 as a novel drug candidate for the non-opioid treatment of pain.

1UG3DA048375-01
The long-term reduction of pain and opioid usage following mastectomy and tissue expander/implant surgery with a single administration of brivoligide, a non-opioid, disease-modifying drug candidate Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA ADYNXX, INC. MAMET, JULIEN; MANNING, DONALD C San Francisco, CA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

There is an urgent need to prevent and reduce opioid use disorder (OUD) by reducing the need for opioid analgesia and preventing the escalation of opioid dosing in patients at greater risk of using more opioids following surgery. Brivoligide is a non-opioid drug candidate that can alter the course of postoperative pain for patients most likely to suffer increased pain and utilize more opioids following surgery. A single administration of brivoligide at the time of surgery can reduce acute postoperative pain in these patients by 30 percent to 40 percent beyond what can be achieved with the current standard of care for at least 28 days and reduce opioid utilization by 40 percent over a 3-month period following surgery. This project will support the research necessary to achieve regulatory approval of brivoligide with a broad indication, which will initially focus on the reduction of postoperative pain following mastectomy, a soft-tissue surgery model suitable to detect long-term pain and opioid reduction benefits. Brivoligide appears to be a very promising pharmacotherapy with the potential to greatly contribute to stemming the tide in the opioid crisis.

1UF1MH121944-01
The Whole Health Study: Collaborative Care for OUD and Mental Health Conditions New Strategies to Prevent and Treat Opioid Addiction Optimizing Care for People with Opioid Use Disorder and Mental Health Conditions NIMH UNIVERSITY OF PENNSYLVANIA MANDELL, DAVID S (contact); BOGNER, HILLARY R; KAMPMAN, KYLE MATTHEW Philadelphia, PA 2019
NOFO Title: HEAL Initiative: Effectiveness Trials to Optimize, Implement, Scale, and Sustain the Collaborative Care Model for Individuals with Opioid Use Disorders and Mental Health Conditions (U01 Clinical Trial Required)
NOFO Number: RFA-MH-19-525
Summary:

This study will refine and test a collaborative care model for patients with opioid use disorder (OUD) and major depression, post-traumatic stress disorder, or an anxiety disorder in primary care. The primary aims of the study are: (1) prototype and test elements of the research team’s collaborative care models; (2) conduct a randomized study of three collaborative care conditions to determine which is most effective in improving outcomes for people with OUD and mental health conditions: Augmented Usual Care, Collaborative Care, or Collaborative Care + Social Worker; (3) measure clinician and organizational-level factors associated with implementation to increase success; (4) conduct a cost evaluation of each collaborative care model; and (5) work with smaller and rural practices to develop and test effective strategies to manage OUD. Successful completion of this study will provide evidence regarding the elements of integrated collaborative care required to maximize outcomes for individuals with OUD and psychiatric disorders.

1U24NS115689-01
Specialized Clinical Center at MGH for the Early Phase Pain Investigation Clinical Network Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS MASSACHUSETTS GENERAL HOSPITAL MAO, JIANREN Boston, MA 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Specialized Clinical Centers (U24 Clinical Trial Not Allowed)
NOFO Number: NS115689-01
Summary:

The MGH EPPIC-Net hub will utilize two well-established collaborative entities in both patient care and clinical research at the Massachusetts General Hospital (MGH): 1) MGH Division of Pain Medicine and 2) MGH Center for Translational Pain Research. This hub-spoke network at MGH will include four core spokes consisting of both academic centers and community health care organizations, as well as over a dozen spokes that can be recruited as needed based on special requirements of phase II trials and research studies. The responsibilities of this hub-spoke network at MGH include a) coordinating phase II trials/clinical biomarker validation studies; b) recruiting well-phenotyped subjects in a timely manner; c) collecting clinical data and targeted outcome data tailored to meet the needs of each clinical trial/study; and d) maintaining communications within and outside the hub, including the NIH EPPIC-Net.

1R44DA050339-01
Transforming smartphones into active sonar systems to detect opioid overdose Cross-Cutting Research Small Business Programs NIDA SOUND LIFE SCIENCES, INC. GILLESPY, THURMAN (contact); GOLLAKOTA, SHYAMNATH ; SUNSHINE, JACOB Seattle, WA 2019
NOFO Title: HEAL Initiative: America’s Startups and Small Businesses Build Technologies to Stop the Opioid Crisis (R43/R44 - Clinical Trial Optional)
NOFO Number: RFA-DA-19-019
Summary:

Deaths from opioid overdose are highly preventable with early detection and administration of naloxone, but overdose victims often die because they are alone or among untrained or impaired bystanders and thus do not receive timely resuscitation. There is an urgent, unmet need for a low-barrier, easily scalable solution that can identify opioid overdoses in real time and rapidly connect victims to naloxone therapy. This proposal seeks to commercialize an innovative overdose detection software product that can be downloaded on any commodity smartphone and can detect opioid- induced respiratory failure (i.e., overdose) and summon help. The software-only product, SecondChance, converts a smartphone into a short-range active sonar system capable of monitoring breathing and detecting overdose.

1U24NS113784-01
University of Rochester Hub and Spokes for the EPPIC Network - Specialized Clinical Center Clinical Research in Pain Management Early Phase Pain Investigation Clinical Network (EPPIC-Net) NINDS UNIVERSITY OF ROCHESTER MARKMAN, JOHN DOUGLAS (contact); GEWANDTER, JENNIFER Rochester, NY 2019
NOFO Title: HEAL Initiative: Early Phase Pain Investigation Clinical Network - Specialized Clinical Centers (U24 Clinical Trials Not Allowed)
NOFO Number: RFA-NS-19-025
Summary:

The NIH’s HEAL Initiative aims to support collaboration between clinical research experts in academia and industry to accelerate the development of highly efficacious, nonaddictive analgesics for well-defined chronic pain syndromes. The University of Rochester (UR), and its leadership for the UR Hub and Spokes within Early Phase Pain Investigation Clinical Network (EPPIC-Net), will recruit subjects with a broad range of pain conditions, with a focus on leveraging clinical trial infrastructure to support patient recruitment and retention, timely and accurate data entry, and regulatory documentation, as well as recruit additional Spoke sites through a national network of analgesic researchers.

1UH2AR076729-01
The Spine Phenome Project: Enabling Technology for Personalized Medicine Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS OHIO STATE UNIVERSITY MARRAS, WILLIAM STEVEN (contact); KHAN, SAFDAR N; WEAVER, TRISTAN E Columbus, OH 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

Current diagnostics and treatments of chronic low back pain (cLBP) rely primarily on subjective metrics and do not target all the multidimensional biopsychosocial mechanisms. This multidisciplinary effort will develop and validate a digital health platform and provide meaningful data-driven metrics that enable an integrated approach to clinical evaluation and treatment of cLBP. This platform will facilitate the use of quantitative spinal motion metrics (function), patient-reported outcomes, and patient preference information to enable deep patient phenotyping and inform clinical decision making on personalized treatments in order to improve outcomes. This effort will involve software and hardware development to enable data collection, analysis, and visualization in clinical settings. The outcome of this project will be a digital health platform with data to support regulatory submission for clinical use. At the end of this effort, the researchers will have a validated tool for integration in clinical research studies supported by the BACPAC Consortium.

3UG1DA040309-04S3
Expanding Clinical Research Training on Implementing the Evidence-based Hub and Spoke Model of Medication for Opioid Use Disorder (MOUD) Translation of Research to Practice for the Treatment of Opioid Addiction Enhancing the National Drug Abuse Treatment Clinical Trials Network to Address Opioids NIDA DARTMOUTH COLLEGE MARSCH, LISA A. Hanover, NH 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

As part of an ongoing teleECHO learning collaborative (LC),this study will expand clinical research training in evidence-based quality improvementmethods that were central to delivering and sustaining science-based medication-assisted treatment for opioid use disorder (MOUD) within the Vermont Hub-and-Spoke Model (HSM) with fidelity. Participating primary care practices will be trained in the (1) use of astudy-developedtoolkit of research and evaluationquality improvementmethodsintended to expand provider knowledge and performance in the delivery of evidence-based MOUD, (2) systematic tracking of standardized outcome metrics, and (3) sharing of these standardized data with other LC membersso that practices can use this empirical information to refine their care model over time. The study will measure changes in providers’ knowledge about best practices for MOUD, their comfort in caring for OUD patients with MOUD and their performance on all the standardized outcome metrics.

3UG1DA040309-05S3
Ancillary Study of the Adoption and Sustainability of ED-Initiated Buprenorphine Translation of Research to Practice for the Treatment of Opioid Addiction Enhancing the National Drug Abuse Treatment Clinical Trials Network to Address Opioids NIDA DARTMOUTH COLLEGE MARSCH, LISA A. Hanover, NH 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

For many reasons, the emergency department (ED) is a critical venue to initiate opioid use disorder (OUD) interventions. ED patients have a disproportionately high prevalence of substance use disorders and are at an elevated risk of overdose, and many do not access health care elsewhere. Despite this, OUD interventions are rarely initiated in EDs. The Emergency Department Connection to Care with Buprenorphine for Opioid Use Disorder study (CTN-0079) will assess the feasibility, acceptability and impact of introducing clinical protocols for screening for OUD, buprenorphine treatment initiation, and referral for ongoing treatment in ED settings with high need, limited resources and different staffing structures. This extension study will use the existing infrastructure to evaluate the adoption and sustainability of the clinical protocols introduced at each of the study sites and to identify factors influencing their diffusion and effectiveness.

3UG1DA040309-05S4
OUD Phenotyping Feasibility for Clinical Trials Translation of Research to Practice for the Treatment of Opioid Addiction Enhancing the National Drug Abuse Treatment Clinical Trials Network to Address Opioids NIDA DARTMOUTH COLLEGE MARSCH, LISA A. Hanover, NH 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Very little research has been conducted on better understanding of phenotypic characterization of individuals with OUD (beyond DSM-5 diagnoses) and how these features predict illness severity, treatment retention or outcomes. The primary objective of the deep phenotyping study is to provide a comprehensive phenotypic characterization (e.g., domains of negative affect, reward salience, cognitive control, mental health) of a heterogeneous sample of individuals (n = 1,000) who currently meet one or more DSM-5 diagnostic criteria for OUD and are in treatment for OUD. In a subset of this sample (n = 100), the investigators conduct digital phenotyping to examine the utility of ecological momentary assessment (EMA), digital sensing and social media to predict retention, medication adherence and opioid use outcomes in patients receiving buprenorphine for OUD. It is anticipated that this foundational study will inform the feasibility and utility of such assessments that can be successfully embedded into imminent and future CTN and other OUD clinical trials.

3UG1DA040309-05S5
Rural Expansion of Medication Treatment for Opioid Use Disorder Translation of Research to Practice for the Treatment of Opioid Addiction Enhancing the National Drug Abuse Treatment Clinical Trials Network to Address Opioids NIDA DARTMOUTH COLLEGE MARSCH, LISA A. Hanover, NH 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

People who use opioids in rural areas suffer worse health and less insurance coverage. The opioid problem in rural areas is of particular concern, as rural areas have higher overdose rates despite equivalent rates of OUD. This is because rural areas have a scant number of clinics and clinicians who provide medication treatment for OUD. Thus, people living in rural areas must travel long distances to access clinics that may or may not have expertise in providing treatment to patients with OUD. Telemedicine (TM) could efficiently increase capacity for delivery of buprenorphine in rural areas and may increase the number of patients receiving medication treatment and improve treatment retention and outcomes. While the development of medication treatments for opioid use disorder (MOUD) capacity in primary care settings with optimal/comprehensive services is desirable, the current opioid crisis with escalating overdose death rates in rural areas suggests a need to implement an efficient, cost-effective system of MOUD services that can be scaled up quickly. The use of a centralized and Medicare-covered TM vendor utilizing a developed methodology and established organizational infrastructure offers the great potential for a rapid rollout to increase access to MOUD and improve treatment retention in rural areas. This cluster randomized clinical trial with two phases will test expanded treatment access to improve retention on MOUD in highly affected rural areas. Phase I will include implementing telemedicine in a limited number of rural sites with varying levels of office-based opioid treatment (OBOT) to inform implementation strategies for the main trial, and Phase II will include evaluate comparative effectiveness between OBOT alone and OBOT + TM at 30 sites.

3UG1DA040309-04S4
OUD Phenotyping Feasibility for Clinical Trials Translation of Research to Practice for the Treatment of Opioid Addiction Enhancing the National Drug Abuse Treatment Clinical Trials Network to Address Opioids NIDA Dartmouth College MARSCH, LISA A. Hanover, NH 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Very little research has been conducted on better understanding of phenotypic characterization of individuals with OUD (beyond DSM-5 diagnoses) and how these features predict illness severity, treatment retention or outcomes. The primary objective of the deep phenotyping study is to provide a comprehensive phenotypic characterization (e.g., domains of negative affect, reward salience, cognitive control, mental health) of a heterogeneous sample of individuals (n = 1,000) who currently meet one or more DSM-5 diagnostic criteria for OUD and are in treatment for OUD. In a subset of this sample (n = 100), the investigators conduct digital phenotyping to examine the utility of ecological momentary assessment (EMA), digital sensing and social media to predict retention, medication adherence and opioid use outcomes in patients receiving buprenorphine for OUD. It is anticipated that this foundational study will inform the feasibility and utility of such assessments that can be successfully embedded into imminent and future CTN and other OUD clinical trials.

3R01MD010372-03S1
PROSPECTIVE STUDY OF RACIAL AND ETHNIC DISPARITIES IN CHRONIC PAIN AND PAIN BURDEN Clinical Research in Pain Management NIMHD Rand Corporation MARSHALL, GRANT Santa Monica, CA 2018
NOFO Title: Mechanisms, Models, Measurement, & Management in Pain Research (R01)
NOFO Number: PA-13-118
Summary:

Data suggest that members of minority groups are more likely to develop chronic pain and to have greater pain burden. We will identify a set of promising intervention targets for reducing or eliminating racial/ethnic pain disparities. We will interview adult survivors of serious physical injury, comprised of roughly equal proportions of African-Americans (AA), Latinos, and non-Latino Whites (NLW), and examine their medical records for information on injury severity and medication use in-hospital. Our aims are to determine whether: 1) AA and Latino physical injury survivors experience more severe pain relative to NLW; 2) AA and Latino injury survivors experience greater pain burden relative to NLW counterparts; 3) differences in pain severity burden are linked to a set of target candidates for interventions; and (4) pain outcomes in at-risk minority groups can be linked to a set of target candidates for group-tailored interventions to reduce pain severity and pain burden.

1UG3DA050306-01
1-Year Sustained Release Naltrexone Implant for the prevention of relapse to opioid dependence Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA Delpor, Inc. Martin, Francis South San Francisco, CA 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

There is a need for longer-acting prophylactic pharmacologic options for opioid use disorder (OUD) patients during maintenance therapy. This study tests a titanium implant loaded with a formulation of naltrexone and a naturally occurring carboxylic acid. The device is implanted subcutaneously with local anesthetic during an in-office procedure. The technology is based on a unique formulation that keeps the pH within the reservoir low and promotes passive diffusion of naltrexone. The benefits of the product include complete medication adherence for one year after administration, fewer relapses, smooth profile ensuring complete prophylaxis without sub-therapeutic plasma troughs, full reversibility, and similar efficacy with less drug exposure. This technology has been validated clinically with another drug and tested preclinically with naltrexone. This project will finalize the chemistry manufacturing and controls, produce IND supplies, conduct an IND-enabling safety study, and submit the IND.

1U01DA050442-01
Using Implementation Interventions and Peer Recovery Support to Improve Opioid Treatment Outcomes in Community Supervision Translation of Research to Practice for the Treatment of Opioid Addiction Justice Community Overdose Innovation Network (JCOIN) NIDA BROWN UNIVERSITY MARTIN, ROSEMARIE A; BRINKLEY-RUBINSTEIN, LAUREN ; ROHSENOW, DAMARIS J Providence, RI 2019
NOFO Title: HEAL Initiative: Justice Community Opioid Innovation Network (JCOIN) Clinical Research Centers (UG1 Clinical Trial Optional)
NOFO Number: RFA-DA-19-025
Summary:

Individuals who have been previously incarcerated have a significantly higher risk of dying from opioid overdose, particularly in the first two weeks after release. Providing medication for opioid use disorder (MOUD) to individuals on probation or parole decreases the rate of relapse and recidivism, and increases retention in substance abuse treatment. This study will test a systems-change approach for increasing use of MOUD across a network of seven probation and parole sites to improve linkage to the continuum of evidence-based care for justice-involved individuals. Implementation outcomes include program acceptability, adoption, penetration, sustainability, and costs. Client-level effectiveness outcomes include retention, satisfaction, opioid use, opioid overdoses, recidivism, linkage to OUD treatment, and utilization of recovery services. Targeting the intersection of justice and community-based care has substantial potential for addressing the opioid crisis.

1UG3DA048351-01
A Phase I/IIa Clinical Trial Testing the Safety and Immunogenicity of a Heroin Vaccine and its Efficacy Against Morphine Challenge. Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA HENRY M. JACKSON FDN FOR THE ADV MIL/MED MATYAS, GARY R Bethesda, MD 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

In order to address the opioid crisis, this group has developed a candidate heroin/opioid vaccine that induces antibodies that bind heroin/opioid upon injection and subsequently prevent the drug from crossing the blood-brain barrier and interacting with the brain's µ-opioid receptor. They completed pre-clinical testing of the vaccine candidate in mice and rats and demonstrated that the animals were protected from subcutaneous and intravenous heroin challenge. Ongoing durability studies have demonstrated that antibody titer and protective efficacy were maintained 6 months after the last vaccination. This project proposes to advance the development of the vaccine candidate by conducting a Phase I/IIa human clinical trial, by performing vaccine synthesis, nonclinical studies, and then a clinical trial. The supplemental award will allow for testing the efficacy of fentanyl haptens and of the combination heroin–fentanyl vaccine.

3UG3DA048351-01S1
A Phase I/IIa Clinical Trial Testing the Safety and Immunogenicity of a Heroin Vaccine and its Efficacy Against Morphine Challenge. Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA HENRY M. JACKSON FDN FOR THE ADV MIL/MED MATYAS, GARY R Bethesda, MD 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
1U44NS115632-01
Implantable Peripheral Nerve Stimulator for Treatment of Phantom Limb Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS RIPPLE, LLC MCDONNALL, DANIEL Salt Lake City, UT 2019
NOFO Title: HEAL Initiative: Translational Devices to Treat Pain (U44 Clinical Trial Optional)
NOFO Number: RFA-NS-19-017
Summary:

The research team will develop an implantable neural stimulation system to provide natural and intuitive sensation for prosthesis users. The nerve cuff technology meets the requirements for a sensory feedback system capable of providing consistent and controlled electrical stimulation. Coupled with a multichannel implantable stimulator, this electrode array will offer substantial improvement over existing options to treat phantom limb pain (PLP). In Phase I, researchers will finalize array architectures for evaluation in cadaver studies, complete integration of electrodes with our stimulator, conduct benchtop verification of electrical and mechanical performance, send implants for third-party evaluation of system biocompatibility, and complete a Good Laboratory Practice animal study to validate safety and efficacy. In Phase II, researchers will conduct a 5-subject clinical study to test the implantable stimulation system. Each unilateral prosthesis user will be implanted for one year as researchers evaluate the safety and efficacy of this implantable device to treat PLP.

1R34DA050256-01
5/5 Establishing Innovative Approaches for the HEALthy Brain and Child Development Study Enhanced Outcomes for Infants and Children Exposed to Opioids HEALthy Brain and Child Development (HBCD) Study NIDA UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN MCELWAIN, NANCY L CHAMPAIGN, IL 2019
NOFO Title: HEAL Initiative: HEALthy Brain and Child Development Study (HEALthy BCD) (Collaborative R34 Clinical Trial Not Allowed)
NOFO Number: RFA-DA-19-029
Summary:

A more than 5-fold increase in the incidence of neonatal abstinence syndrome has been reported since 2000. Preliminary studies show that prenatal opioid exposure is associated with increased risk of impaired neurodevelopment. Five institutions (Duke University, Arkansas Children’s Research Institute, Cincinnati Children’s Hospital, University of Illinois at Urbana–Champaign, and University of North Carolina at Chapel Hill) have formed a consortium to develop strategies for the Phase II HEALthy Brain and Child Development Study. Research teams will develop instruments and strategies (recruitment/retention protocols, assessment batteries, and novel tools); conduct pilot studies (fetal and postnatal imaging, advanced imaging harmonization and quality control, assessment administration, biosampling) to evaluate instruments; and analyze available data, including imaging, behavioral, cognitive, and maternal data from studies on early brain development, to guide the Phase II study design. Upon completion, the consortium aims to conduct the Phase II study.

1U44NS115111-01
High-Resolution, Spinal Cord Stimulation for Non-Opioid Treatment of Neuropathic Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS MICRO-LEADS, INC. MCLAUGHLIN, BRYAN L Somerville, MA 2019
NOFO Title: HEAL Initiative: Translational Devices to Treat Pain (U44 Clinical Trial Optional)
NOFO Number: RFA-NS-19-017
Summary:

The research team will develop HD64—a high-resolution, 64-channel spinal cord stimulation therapy to provide more pain relief for those suffering from chronic neuropathic pain and opioid dependence. HD64 provides an ultra-thin conformal blanket of stimulation contacts across the width of the spinal cord and enables more precise targeting of the lateral structures of the spinal cord to enhance pain relief. A cadaveric pilot run followed by a non-significant risk intraoperative study will be performed to inform the design parameters of HD64 arrays. The study will evaluate activation of medial and lateral spinal targets. At the end of Phase 1, the clinical feasibility of HD64 surgical leads will be established. In Phase 2, researchers will develop an external active lead pulse generator and charger. They will perform an early feasibility study human trial using active HD64 and mechanical and electrical design verification testing and chronic safety studies in large animals.

1UG3DA048353-01
Opioid use disorders: UF Pharmacy medications discovery and development Novel Therapeutic Options for Opioid Use Disorder and Overdose Focusing Medication Development to Prevent and Treat Opioid Use Disorder and Overdose NIDA UNIVERSITY OF FLORIDA MCMAHON, LANCE R; MCCURDY, CHRISTOPHER R Gainesville, FL 2019
NOFO Title: Development of Medications to Prevent and Treat Opioid Use Disorders and Overdose (UG3/UH3) (Clinical Trial Optional)
NOFO Number: RFA-DA-19-002
Summary:

Opioids have been significantly over-prescribed and are associated with numerous deaths, resulting in the nation’s current opioid crisis. The FDA recently approved the ?2 adrenergic agonist lofexidine as a non-addictive, non-opioid treatment for opioid use disorder (OUD), but there is a continued, urgent need to develop additional pharmacological alternatives to address both pain and OUD. The psychoactive, natural product, Mitragyna speciosa (kratom), has triggered significant interest in this space because Mitragynine, its main alkaloid, can interact with both mu opioid and ?2 receptors, offering a totally new approach for treating OUD. This project involves the synthesis and research of a series of Mitragynine analogs to better understand the pharmacological mechanisms that underlie Mitragynine’s opioid and adrenergic activities. If successful, this project will result in templates for the design of novel opioid receptor ligands. This advance would greatly improve the knowledge of interactions of these structurally novel compounds with opioid receptors and facilitate the development of these ligands as treatments for OUD.

3U24DK116214-02S1
ILLUMINATING DRUGGABLE DARK MATTER Preclinical and Translational Research in Pain Management NIDDK UNIVERSITY OF CALIFORNIA, SAN FRANCISCO MCMANUS, MICHAEL T; JAN, LILY Y San Francisco, CA 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

The goal of this project is to generate data and reagents that help uncover critical functions of the poorly characterized members of ion channels. It focuses on co-perturbation of ion channel genes and their interacting genetic components as opposed to singly altering ion channel genes in mouse models. This approach will validate our proteomics approaches in the most definitive manner: in vivo. We see in vivo exploration as an essential step to evaluate ion channel function. Our major aims include mapping ion channel interactions and complexes using a high-throughput proteomics platform at UCSF. These data will be interrogated using integrative approaches established by the Monarch Initiative, where biochemical interactions will be validated and prioritized for further study. Another major aim is function-centric: We use mouse models for elucidation of human disease mechanisms, where we embrace a genetic interaction scheme to uncover ion channel redundancy and polygenic effects.

1U01DK123786-01
Randomized ESRD Trial COmparing CBT alone VERsus with buprenorphine (RECOVER) Clinical Research in Pain Management Integrated Approach to Pain and Opioid Use in Hemodialysis Patients NIDDK UNIVERSITY OF WASHINGTON MEHROTRA, RAJNISH (contact); CUKOR, DANIEL ; UNRUH, MARK LYNN Seattle, WA 2019
NOFO Title: HEAL Initiative: Integrated Approach to Pain and Opioid Use in Hemodialysis Patients: The Hemodialysis Opioid Prescription Effort (HOPE) Consortium - Clinical Centers (U01 Clinical Trial Required)
NOFO Number: RFA-DK-18-030
Summary:

For patients with end-stage renal disease treated with long-term hemodialysis (HD), the safety and efficacy of behavioral interventions alone or augmented by safer drugs remain untested. This study will perform a multicenter parallel group randomized controlled trial to test the efficacy of two interventions to reduce opioid use in HD patients. Seven hundred and twenty HD patients with significant and ongoing opioid use will be randomly assigned to (1) telehealth cognitive behavioral therapy (CBT) alone, (2) telehealth CBT augmented by transdermal buprenorphine, and (3) usual care, with follow-up for up to one year. The primary outcome will be prescribed morphine milligram equivalent (MME) over the preceding four weeks. Three patient-reported outcomes (interference by pain, functional status, and quality of life) will comprise the secondary outcomes.