Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Sort descending Location(s) Year Awarded
3U44NS115692-01S1
Development and Optimization of MNK Inhibitors for the Treatment of Neuropathic Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS 4E THERAPEUTICS INC. SAHN, JAMES JEFFREY Austin, TX 2020
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008
Summary:

There is an urgent unmet need for more efficacious analgesics that act via a non-opioid pathway. Mitogen Activated Protein Kinase-interacting kinase 2 (MNK2) is an enzyme that has been implicated in pain signaling, and there is compelling evidence that inhibiting MNK2 has significant pain-reducing effects with few side-effects. Since MNK2 selective inhibitors have not yet been identified, selective inhibition of MNK2 with a small molecule has not been possible. The development of such compounds will enable studies that will illuminate key differences between MNK2 and MNK1. More importantly, from a therapeutic standpoint, highly selective MNK2 inhibitors may prove to have enhanced efficacy and a more favorable side-effect profile than molecules that inhibit both MNK2 and MNK1. This project will support the design and synthesis of at least one MNK2 inhibitor, with >100-fold selectivity over MNK1, that may be developed into a lead compound for treating neuropathic pain.

1R01NS113257-01
Discovery and validation of a novel orphan GPCR as a target for therapeutic intervention in neuropathic pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS St. Louis University SALVEMINI, DANIELA St. Louis, MO 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Neuropathic pain conditions are exceedingly difficult to treat, and novel non-opioid analgesics are desperately needed. Receptomic and unbiased transcriptomic approaches recently identified the orphan G-protein coupled receptor (oGPCR), GPR160, as a major oGPCR whose transcript is significantly increased in the dorsal horn of the spinal cord (DH-SC) ipsilateral to nerve injury, in a model of traumatic nerve-injury induced neuropathic pain caused by constriction of the sciatic nerve in rats (CCI). De-orphanization of GPR160 led to the identification of cocaine- and amphetamine-regulated transcript peptide (CARTp) as a ligand which activates pathways crucial to persistent pain sensitization. This project will test the hypothesis that CARTp/GPR160 signaling in the spinal cord is essential for the development and maintenance of neuropathic pain states. It will also validate GPR160 as a non-opioid receptor target for therapeutic intervention in neuropathic pain, and characterize GPR160 coupling and downstream molecular signaling pathways underlying chronic neuropathic pain.

3R01NS113257-01S1
Isolation of GPR160 for biochemical analysis of the activation mechanism and development of a high throughput screening assay to identify small molecule inhibitors Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS SAINT LOUIS UNIVERSITY SALVEMINI, DANIELA Saint Louis, MO 2020
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008
Summary:

Neuropathic pain conditions are difficult to treat, and novel non-narcotic analgesics are desperately needed. The G protein-coupled receptor 160 (GPR160) has emerged as a novel target for analgesic development, as GPR160 in the spinal cord may play a role in the transition from acute to chronic pain. Cocaine- and Amphetamine-Regulated transcript peptide (CARTp) was identified as a ligand for GPR160. Blocking endogenous CARTp signaling in the spinal cord attenuates neuropathic pain, whereas intrathecal injection of CARTp evokes painful hypersensitivity in rodents through GPR160-dependent extracellular signal-regulated kinase (ERK) and cyclic AMP response element-binding pathways (CREB). This project will isolate and biochemically characterize GPR160 and establish methods for biochemical characterization of GPR160 interaction with CARTp activator. Researchers will miniaturize and optimize biochemical assay and scale up protein production for future high throughput biochemical screening to identify potent inhibitors of GPR160 activation. These studies are critical for defining the molecular mechanism of CARTp/GPR160 interactions and initiating large-scale screens for new inhibitors to develop novel therapeutics.

1R01AR077890-01
Validation of Novel Target for OA Treatment Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF ILLINOIS AT CHICAGO SAMPEN, HEE-JEONG IM; LASCELLES, DUNCAN Chicago, IL 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Osteoarthritis (OA) is the most common form of arthritis and a leading cause of pain and disability. Current challenges of managing OA are that there is no OA disease-modifying drug available, there are few effective treatment strategies, and there is an over-reliance on the use of opioids to manage OA-related joint pain. This project aims to validate vascular endothelial growth factor receptors 1 and 2 (VEGFR 1 receptor = Flt1) and (VEGFR 2 receptor = Flk1) as novel therapeutic targets for OA. This is based on a hypothesis that blocking these two specific receptors of VEGF will inhibit cartilage tissue degeneration and alleviate pain symptoms. This study will test the role of VEGFR-1 and -2 in multiple OA animal models using multiple available VEGF inhibitor molecules. The findings from these studies will develop a rationale for future clinical trials to target VEGFR-1 and -2 for OA patients and develop a novel non-addictive treatment for both joint pain and OA pathology.

1R01NS118504-01
Targeting GPCRs in Amygdalar and Cortical Neural Ensembles to Treat Pain Aversion Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIV OF NORTH CAROLINA CHAPEL HILL SCHERRER, GREGORY Chapel Hill, NC 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

There is a distinct neural ensemble in the brain that encodes the negative affective valence of pain. This project will identify novel targets to treat pain by determining the molecular identity of these BLA nociceptive cells via in situ hybridization and single cell RNAsequencing (scRNA-seq). Resolving the molecular identity of these ACC nociceptive cells will also reveal new targets to treat pain affect. To achieve these results the project will catalog candidate Gi/o-GPCR targets in BLA and ACC, test their utility to treat pain, and verify these new targets have no effect in the brain?s reward and breathing circuitry. The experiments in this project will also evaluate each target for abuse potential and effects on breathing by using behavioral assays for reward processing and whole-body plethysmography, respectively. To evaluate whether our results in rodents are likely to translate clinically, there will be an analysis of expression patterns of these drug targets in human tissue using in situ hybridization.

1RM1DE033491-01
Endosomal Mechanisms Signaling Oral Cancer Pain Preclinical and Translational Research in Pain Management Integrated Basic and Clinical Team-Based Research in Pain NIDCR NEW YORK UNIVERSITY SCHMIDT, BRIAN L (contact); BUNNETT, NIGEL W; KHANNA, RAJESH; LEONG, KAM W; YE, YI New York, NY 2023
NOFO Title: HEAL Initiative Integrated Basic and Clinical Team-based Research in Pain (RM1 Clinical Trial Optional)
NOFO Number: RFA-NS-22-069
Summary:

Human oral cancer is associated with significant chronic pain, and a comprehensive understanding of the biology and mechanisms underlying this chronic pain is critical for developing better pain management strategies. This project will determine molecular characteristics, including a specific signaling system (endosomal GPCR kinase), associated with chronic oral cancer pain, using tissue samples obtained from patients with this condition. The findings will then be used to inform studies in animal models of human oral cancer pain to enhance understanding how endosomal GPCR kinase contributes to human oral cancer pain.

1R61NS113269-01
Validation of a novel cortical biomarker signature for pain Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS University of Maryland, Baltimore SEMINOWICZ, DAVID Baltimore, MD 2019
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

Chronic pain is a major health burden associated with immense economic and social costs. Predictive biomarkers that can identify individuals at risk of developing severe and persistent pain, which is associated with worse disability and greater reliance on opioids, would promote aggressive, early intervention that could halt the transition to chronic pain. The applicant’s team uncovered evidence of a unique cortical biomarker signature that predicts pain susceptibility (severity and duration). This biomarker signature could be capable of predicting the severity of pain experienced by an individual minutes to months in the future, as well as the duration of pain (time to recovery). Analytical validation of this biomarker will be conducted in healthy participants using a standardized model of the transition to sustained myofascial temporomandibular pain. Specifically the biomarker signature will be tested for its ability to predict an individual’s pain sensitivity, pain severity, and pain duration and will perform initial clinical validation.

5R01NS094461-04
Clustering of individual and diverse ion channels together into complexes, and their functional coupling, mediated by A-kinase anchoring protein 79/150 in neurons Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TEXAS HLTH SCI CTR SAN ANTONIO SHAPIRO, MARK S San Antonio, TX 2018
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

Multi-protein complexes have emerged as a mechanism for spatiotemporal specificity and efficiency in the function and regulation of cellular signals. Many ion channels are clustered either with the receptors that modulate them or with other ion channels whose activities are linked. Often, the clustering is mediated by scaffolding proteins, such as AKAP79/150. We will probe complexes containing AKAP79/150 and three different channels critical to nervous function: KCNQ/Kv7, TRPV1, and CaV1.2. We will use"super-resolution" STORM imaging of primary sensory neurons and heterologously expressed tissue-culture cells, in which individual complexes can be visualized at 10–20 nm resolution with visible light. We hypothesize that AKAP79/150 brings several of these channels together to enable functional coupling, which we will examine by patch-clamp electrophysiology of the neurons. Since all three of these channels bind to AKAP79/150, we hypothesize that they co-assemble into complexes in neurons and that they are dynamically regulated by other cellular signals.

3R01NS094461-04S2
TARGETING SPECIFIC INTERACTIONS BETWEEN A-KINASE ANCHORING PROTEINS (AKAPS) AND ION CHANNELS WITH CELL-PERMEANT PEPTIDES AS A NOVEL MODE OF THERAPEUTIC INTERVENTION AGAINST PAIN DISORDERS Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TEXAS HLTH SCIENCE CENTER SHAPIRO, MARK S SAN ANTONIO, TX 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Multi-protein complexes have emerged as a mechanism for spatiotemporal specificity and efficiency in the function and regulation of myriad cellular signals. In particular, many ion channels are clustered either with the receptors that modulate them, or with other ion channels whose activities are linked. Often the clustering is mediated by scaffolding proteins, such as the AKAP79/150 protein that is a focus of this research. This research will focus on three different channels critical to nervous function. One is the"M-type" (KCNQ, Kv7) K+ channel that plays fundamental roles in the regulation of excitability in nerve and muscle. It is thought to associate with Gq/11- coupled receptors, protein kinases, calcineurin (CaN), calmodulin (CaM) and phosphoinositides via AKAP79/150. Another channel of focus is TRPV1, a nociceptive channel in sensory neurons that is also thought to be regulated by signaling proteins recruited by AKAP79/150. The third are L-type Ca2+ (CaV1.2) channels that are critical to synaptic plasticity, gene regulation and neuronal firing. This research will probe complexes containing AKAP79/150 and these three channels using"super-resolution" STORM imaging of primary sensory neurons and heterologously-expressed tissue-culture cells, in which individual complexes can be visualized at 10-20 nm resolution with visible light, breaking the diffraction barrier of physics. The researchers hypothesize that AKAP79/150 brings several of these channels together to enable functional coupling, which the researchers will examine by patch-clamp electrophysiology of the neurons. Förster resonance energy transfer (FRET) will also be performed under total internal reflection fluorescence (TIRF) or confocal microscopy, further testing for complexes containing KCNQ, TRPV1 and CaV1.2 channels. Since all three of these channels bind to AKAP79/150, the researchers hypothesize that they co-assemble into complexes in neurons, together with certain G protein-coupled receptors. Furthermore, the researchers hypothesize these complexes to not be static, but rather to be dynamically regulated by other cellular signals, which the researchers will examine using rapid activation of kinases or phosphatases. Several types of mouse colonies of genetically altered AKAP150 knock-out or knock-in mice will be utilized.

1R61NS126029-01A1
Inhibiting RIPK1 with Necrostatin-1 for Safe and Effective Pain Treatment Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS Massachusetts General Hospital SHEN, SHIQIAN (contact); HOULE, TIMOTHY T; WANG, CHANGNING ; ZHANG, CAN MARTIN Boston, MA 2022
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development [Small Molecules and Biologics] (R61 Clinical Trial Not Allowed)
NOFO Number: NS21-029
Summary:

Recent studies have reported that neuropathic pain involves changes in the central nervous system that are linked to necroptosis (programmed necrotic cell death) and release of cellular components that create neuroinflammation. Necroptosis is a type of necrotic cell death affected by the protein receptor-interacting serine/threonine-protein kinase 1 (RIPK1 or RIP1). Preliminary studies also indicate that pain increases levels of RIPK1 in key brain regions implicated in pain processing. This project aims to further validate RIPK1 as a target for neuropathic pain using a newly developed positron emission tomography imaging approach. The work will pave the way for new brain-penetrant RIPK1 inhibitors as a safe, effective, and nonaddictive treatment approach for neuropathic pain.

1R34NS126032-01
Stem cell-loaded microgels to treat discogenic low back pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS CEDARS-SINAI MEDICAL CENTER SHEYN, DMITRIY Los Angeles, CA 2021
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development Initial Translational Efforts [Small Molecules and Biologics] (R34 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-21-016
Summary:

Pain caused by the degeneration of discs between vertebrae in the spine makes up a significant proportion of all chronic low back pain conditions. Although opioids are prescribed as treatments for this chronic condition, they often do not provide effective pain management, and currently there are no treatments that target the underlying disc disease. Notochordal cells mature into the cells that make up discs between vertebrae. Preliminary studies have shown that notochordal cells can be made from induced pluripotent stem cells, offering a potential replacement for diseased cells between discs. This study aims to develop a novel treatment for painful disc degeneration using a microgel/microtissue embedded with human notochordal cells made in the lab from induced pluripotent stem cells.

1UH3NS115631-01
Multisite adaptive brain stimulation for multidimensional treatment of refractory chronic pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS UNIVERSITY OF CALIFORNIA, SAN FRANCISCO SHIRVALKAR, PRASAD San Francisco, CA 2019
NOFO Title: HEAL Initiative: Clinical Devices to Treat Pain (UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-19-018
Summary:

The research team will develop stimulation control algorithms to treat chronic pain using a novel device that allows longitudinal intracranial signal recording in an ambulatory setting. Subjects with refractory chronic pain syndromes will undergo bilateral surgical implant of temporary electrodes in the thalamus, anterior cingulate, prefrontal cortex, insula, and amygdala to identify candidate biomarkers of pain and optimal stimulation parameters. Six patients will proceed to chronic implantation of “optimal” brain regions for long-term recording and stimulation. The team will first validate biomarkers of low- and high-pain states to define neural signals for pain prediction in individuals. They will then use these pain biomarkers to develop personalized closed-loop algorithms for deep-brain stimulation (DBS) and test the feasibility of closed-loop DBS for chronic pain in weekly blocks. Researchers will assess the efficacy of closed-loop DBS algorithms against traditional open-loop DBS or sham in a double-blinded cross-over trial and measure mechanisms of DBS tolerance.

1U44NS115732-01
Selective Kv7.2/3 activators for the treatment of neuropathic pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS KNOPP BIOSCIENCES, LLC SIGNORE, ARMANDO (contact); RESNICK, LYNN Pittsburgh, PA 2019
NOFO Title: HEAL Initiative: Optimization of Non-addictive Therapies [Small Molecules and Biologics] to Treat Pain
NOFO Number: RFA-NS-19-020
Summary:

The development of non-addictive pain therapeutics can help counter opioid addiction and benefit patients, including those who suffer from neuropathic pain, in particular diabetic neuropathic pain (DNP). This project’s goal is to develop a safe, efficacious, and non-addictive small-molecule drug that activates Kv7 voltage-gated potassium channels to address overactive neuronal activity in DNP. Researchers will discover Kv7 activators that favor Kv7 isoforms altered in DNP and found in dorsal root ganglia, decrease off-target side effects observed with the use of earlier non-biased Kv7 activators, and optimize the absorption, distribution, metabolism, excretion, and toxicity profiles of these activators. This screening paradigm is intended to establish a clinic-ready, well-tolerated, and widely effective product to treat neuropathic pain.

3R01NS093990-04S1
S1P RECEPTOR MECHANISMS IN NEUROPATHIC PAIN Preclinical and Translational Research in Pain Management NINDS VIRGINIA COMMONWEALTH UNIVERSITY SIM-SELLEY, LAURA J; HAUSER, KURT F; LICHTMAN, ARON H; SELLEY, DANA E RICHMOND, VA 2018
NOFO Title: Mechanisms, Models, Measurement, & Management in Pain Research (R01)
NOFO Number: PA-13-118
Summary:

Chronic pain diminishes the quality of life for millions of patients, and new drugs that have better efficacy and/or fewer side effects are needed. A promising target is the sphingosine-1-phosphate (S1P) receptor system, which mediates central nervous system (CNS) neuromodulatory functions. FTY720-phosphate, the active metabolite of FTY720 (FTY), acts as an agonist at four of the five S1P receptors (S1P1, 3, 4, 5). We propose that the S1P1 receptor is a target for treatment of neuropathic pain. We will test whether S1P1 receptors mediate anti-hyperalgesic effects in a mouse neuropathic pain model. The specific aims are to: 1) determine the role of S1P1Rs in alleviation of neuropathic pain by S1PR ligands; 2) determine the role of FTY-induced S1PR adaptation in FTY-mediated reversal of neuropathic pain; and 3) determine the role of S1P and S1P1 receptors in spinal glia in CCI-induced neuropathic pain and its reversal by FTY.

1R61NS114926-01
SPRINT: Signature for Pain Recovery IN Teens Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS STANFORD UNIVERSITY SIMONS, LAURA E Stanford, CA 2019
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

Up to 5 percent of adolescents suffer from high-impact chronic musculoskeletal (MSK) pain, and only about 50 percent with chronic MSK pain who present for treatment recover. Current treatments for chronic MSK pain are suboptimal and have been tied to the opioid crisis. Discovery of robust markers of the recovery versus persistence of pain and disability is essential to develop more resourceful and patient-specific treatment strategies, requiring measurements across multiple dimensions in the same patient cohort in combination with a suitable computational analysis pipeline. Preliminary data has implicated novel candidates for neuroimaging, immune, quantitative sensory, and psychological markers for discovery. In addition, a standardized specimen collection, processing, storage, and distribution system is in place, along with expertise in machine learning approaches to extract reliable and prognostic bio-signatures from a large and complex data set. This project will facilitate risk stratification and a resourceful selection of patients who are likely to respond to current multidisciplinary pain treatment approaches.

1UG3NS128148-01A1
Peripherally Restricted Non-Addictive Cannabinoids for Cancer Pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS UNIVERSITY OF CALIFORNIA LOS ANGELES SPIGELMAN, IGOR (contact); CAHILL, CATHERINE M; FAULL, KYM FRANCIS; SCHMIDT, BRIAN L; SPOKOYNY, ALEXANDER MICHAEL Los Angeles, CA 2023
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
Summary:

Oral cancer pain is debilitating and difficult to treat, in part because even the most effective available pain remedies are limited by side effects. Opioid-based pain medications have several side effects including dependence and tolerance, in which the body gets used to a medicine so that either more medicine is needed or different medicine is needed. Another side effect is hyperalgesia, in which people taking opioids become more sensitive to certain painful stimuli and may misuse the drugs and risk addiction. This project will evaluate lab-made versions of cannabinoid molecules known to block pain signals in nerve cells, but which cannot enter the brain to cause neurological side effects. The research aims to advance promising versions of the molecules to testing in human research participants.

1R21TR004701-01
Exploration of MBD1 as a Therapeutic Target for Chronic Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NCATS UNIVERSITY OF MINNESOTA STONE, LAURA S Minneapolis, MN 2023
NOFO Title: Emergency Awards: HEAL Initiative-Early-Stage Discovery of New Pain and Opioid Use Disorder Targets Within the Understudied Druggable Proteome (R21 Clinical Trial Not Allowed)
NOFO Number: RFA-TR-22-011
Summary:

Chronic pain results in long-term changes throughout the central nervous system. These include abnormal structure and function of the frontal cortex region of the brain, which relays pain messages and also the common pain-related conditions depression, anxiety, and cognitive impairment. Peripheral nerve injury results in widespread and long-lasting changes to DNA in the frontal cortex. DNA methylation, in which chemical tags are attached to DNA, is one way the body controls the activity of genes over time. This control occurs via proteins that recognize tagged DNA, and some of these proteins do not work properly in the frontal cortex many months after nerve injury. These changes occur after nerve injury and are linked to mechanical sensitivity. This project will determine this DNA-binding protein is a good target for finding new medications for chronic pain. 

1R34NS126030-01
Profiling the human gut microbiome for potential analgesic bacterial therapies Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS HOLOBIOME, INC. STRANDWITZ, PHILIP PETER (contact); GILBERT, JACK ANTHONY Cambridge, MA 2021
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development Initial Translational Efforts [Small Molecules and Biologics] (R34 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-21-016
Summary:

Disruptions in make-up of the microbiome are associated with disorders characterized by chronic pain and inflammation, such as rheumatoid arthritis and fibromyalgia. The gut microbiome has immune and metabolic effects, and human gut-derived bacteria may be a source of novel, safe, and non-addictive pain treatments. However, connections between gut and pain signals, known as the “gut–pain axis,” are still poorly understood. This study aims to identify human-gut-native bacteria that i) interact with known pain targets in lab studies, ii) test their activity and analgesic/anti-inflammatory potential in an animal model, and iii) develop a computational approach to predict microbial-genetic effects on pain signals.

1R18EB035019-01
POWS for NOWS: Using Physiomarkers as an Objective Tool for Assessing the Withdrawing Infant Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB UNIVERSITY OF VIRGINIA SULLIVAN, BRYNNE ARCHER (contact); VESOULIS, ZACHARY ANDREW Charlottesville, VA 2023
NOFO Title: HEAL Initiative: Translational Development of Diagnostic and Therapeutic Devices (R18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-22-002
Summary:

Infants exposed to opioids during pregnancy can develop neonatal opioid withdrawal syndrome (NOWS). To date, clinicians generally use subjective evaluation to determine if an infant has NOWS, how severe the condition is, and if the infant needs treatment with or without medications. This project will evaluate whether an objective physiologic measure—continuous measurement of oxygen levels in the infant’s blood—can be used to develop a scoring system for assessing NOWS severity. The project will also develop and test a device to continuously monitor blood oxygen levels in the infants.

1R21NS130417-01
The Role of Lysosomal Mechano-Sensitive Ion Channel in Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS INDIANA UNIVERSITY PURDUE AT INDIANAPOLIS TAN, ZHIYONG Indianapolis, IN 2022
NOFO Title: Emergency Awards: HEAL Initiative-Early-Stage Discovery of New Pain and Opioid Use Disorder Targets Within the Understudied Druggable Proteome (R21 Clinical Trial Not Allowed)
NOFO Number: TR22-011
Summary:

Chronic pain severely reduces the quality of life and ability to work for millions of Americans. Because misuse of opioids for chronic pain treatment contributes to opioid addiction and opioid overdose, there is an urgent need to study novel non-opioid mechanisms, targets, and treatment strategies for chronic pain. Many ion channels control the flow of electrical signals in peripheral sensory neurons and are thus key targets for understanding and treating chronic pain. This project will conduct detailed studies to identify major ion channel-related molecular activities, targets, and treatment strategies for chronic pain. In particular, this research will explore the role of a specific ion channel (lysosomal mechanosensitive ion channel, orTmem63A) in neuropathic pain resulting from nerve injury.

1RF1NS113881-01
Discovery and validation of a new long noncoding RNA as a novel target for neuropathic pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS RBHS-NEW JERSEY MEDICAL SCHOOL TAO, YUAN-XIANG Newark, NJ 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Identification of new targets and mechanisms underlying chronic neuropathic pain is essential for the discovery of novel treatments and preventative tactics for better neuropathic pain management. A recent exploration of next-generation RNA sequencing identified a large, native, full-length long noncoding RNA (lncRNA) in mouse and human dorsal root ganglion (DRG). It was named as nerve injury-specific lncRNA (NIS-lncRNA), since its expression was found increased in injured DRGs, in response to peripheral nerve injury, but not in response to inflammation. Preliminary findings revealed that blocking the nerve injury-induced increases in DRG NIS-lncRNA levels ameliorated neuropathic pain. This project will validate NIS-lncRNA as a therapeutic target in animal models of neuropathic pain and in cell-based functional assays utilizing human DRG neurons. Completion of this proposal will advance neuropathic pain management and might provide a novel, non-opioid pain therapeutic target.

3R01DA037621-05S1
Long-term activation of spinal opioid analgesia after imflammation - Supplement Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDA University of Pittsburgh TAYLOR, BRADLEY K Pittsburgh, PA 2019
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

Severe tissue injury generates central sensitization. Latent sensitization (LS) is a silent form of central sensitization that persists after tissue has healed and overt signs of hyperalgesia have resolved. Pain remission during LS is likely maintained by tonic opioid receptor activity. The opioid receptor inverse agonist, naloxone, can reinstate experimental pain when delivered one week after the resolution of secondary hyperalgesia following first degree thermal injury. Our aims are to test: 1) the hypothesis that burn or surgery triggers LS and long-term opioid analgesia in humans; 2) the hypothesis that mu-opioid receptor (MOR) constitutive activity (MORCA) receptors by opioid peptides maintains endogenous analgesia and restricts LS to a state of pain remission; 3) the extent to which MORs inhibit neural activity in the DH and synaptic strength in presynaptic terminals of primary afferent nociceptors during LS; and 4) whether MORs inhibit spinal NMDA receptor subunits to block pain during LS.

1R61NS127271-01A1
Planning Study for the Development of Sigma 2 Ligands as Analgesics Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS UNIVERSITY OF KENTUCKY TIDGEWELL, KEVIN JOSEPH (contact); KOLBER, BENEDICT J Lexington, KY 2023
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development [Small Molecules and Biologics] (R61 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-21-029
Summary:

Natural products, which are substances found in nature and made by living organisms, have been used in the past as good sources for developing new medications. Natural products isolated from marine bacteria that attach to the pain-signaling protein sigma-2 receptor (also known as transmembrane protein 97 [TMEM97]), may serve as a starting point to create new, non-opioid pain medications. This project will use chemistry and biology approaches to refine such natural products as a treatment for neuropathic pain.

1R01DE029074-01A1
Novel Target Identification for Treatment of Chronic Overlapping Pain Using Multimodal Brain Imaging Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF MARYLAND BALTIMORE TRAUB, RICHARD J; MELEMEDJIAN, OHANNES KEVORK Baltimore, MD 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

As many as 64% of patients with Temporomandibular Joint Disorders (TMJDs) report symptoms consistent with Irritable Bowel Syndrome (IBS). However the underlying connection between these comorbid conditions is unclear and treatment options are poor. As such, pain management for these Chronic Overlapping Pain Conditions (COPCs) is a challenge for physicians and patients. This project will determine whether the convergence of pain from different peripheral tissues and perceived stress occurs in the brain and elicits a change in central neural processing of painful stimuli. This project will identify and validate specific lipids, enzymes and metabolic pathways that change expression in the brain during the transition from acute to chronic overlapping pain that can be therapeutically targeted to treat COPCs. Multi-disciplinary approaches will be used to combine brain imaging, visualization of spatial distribution of molecules, genetics, pharmacological and behavioral research techniques.

1UG3NS115718-01
Development of MRGPRX1 positive allosteric modulators as non-addictive therapies for neuropathic pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS JOHNS HOPKINS UNIVERSITY TSUKAMOTO, TAKASHI Baltimore, NC 2019
NOFO Title: Optimization of Non-addictive Therapies [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-19-010
Summary:

Although opioid-based analgesics have been proven effective in reducing the intensity of pain for many neuropathic pain conditions, their clinical utility is grossly limited due to the substantial risks involved in such therapy, including nausea, constipation, physical dependence, tolerance, and respiratory depression. Cumulative evidence suggests that human Mas-related G protein-coupled receptor X1 (MRGPRX1) is a promising target for pain with limited side effects due to its restricted expression in nociceptors within the peripheral nervous system; however, direct activation of MRGPRX1 at peripheral terminals is expected to induce itch side effects, limiting the therapeutic utility of orthosteric MRGPRX1 agonists. This finding led to the exploration of positive allosteric modulators (PAMs) of MRGPRX1 to potentiate the effects of the endogenous agonists at the central terminals of sensory neurons without activating peripheral MRGPRX1. An intrathecal injection of a prototype MRGPRX1 PAM, ML382, effectively attenuated evoked, persistent, and spontaneous pain without causing itch side effects. The goal of this study is to develop a CNS-penetrant small-molecule MRGPRX1 PAM that can be given orally to treat neuropathic pain conditions.