Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Sort descending Investigator(s) Location(s) Year Awarded
1U18EB029351-01
Development of an MRgFUS system for precision-targeted neuromodulation of pain circuits with simultaneous functional MRI Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB VANDERBILT UNIVERSITY MEDICAL CENTER CASKEY, CHARLES F (contact); CHEN, LI MIN ; GRISSOM, WILLIAM A Nashville, Tennessee 2019
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

This project aims to develop a next-generation noninvasive neuromodulation system for non-addictive pain treatments. The research team will build an integrated system that uses magnetic resonance image-guided focused ultrasound (MRgFUS) stimulation to target pain regions and circuits in the brain with high precision. The system will use MR imaging to locate three pain targets commonly used in clinical pain treatments, to stimulate those targets with ultrasound, and to monitor responses of nociceptive pain circuits using a functional MRI readout. Three collaborating laboratories will tackle the goals of this project: (Aim 1) Develop focused ultrasound technology for neuromodulation in humans, compatible with the high magnetic fields in an MRI scanner. (Aim 2) Develop MRI technology to find neuromodulation targets, compatible with focused ultrasound transducers. (Aim 3) Validate the complete MRgFUS neuromodulation system in brain pain regions in nonhuman primates. By the end of the project, the research team will have a fully developed and validated MRgFUS system that is ready for pilot clinical trials in pain management.

3R01LM010685-09S1
BEYOND PHEWAS: RECOGNITION OF PHENOTYPE PATTERNS FOR DISCOVERY AND TRANSLATION - ADMINISTRATIVE SUPPLEMENT Preclinical and Translational Research in Pain Management NLM VANDERBILT UNIVERSITY MEDICAL CENTER Denny, Joshua C. NASHVILLE, TN 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Genomic medicine offers hope for improved diagnostic methods and for more effective, patient-specific therapies. Genome-wide associated studies (GWAS) elucidate genetic markers that improve clinical understanding of risks and mechanisms for many diseases and conditions and that may ultimately guide diagnosis and therapy on a patient-specific basis. Previous phenome-wide association studies (PheWAS) established a systematic and efficient approach to identifying novel disease-variant associations and discovering pleiotropy using electronic health records (EHRs). This proposal will develop novel methods to identify associations based on patterns of phenotypes using a phenotype risk score (PheRS) methodology to systematically search for the influence of Mendelian disease variants on common disease. By doing so, it also creates a way to assess pathogenicity for rare variants and will identify patients at highest risk of having undiagnosed Mendelian disease. The project is enabled by large DNA biobanks coupled to de-identified copies of EHR.

1UG3NS135551-01
Translating an MR-guided focused ultrasound system for first-in-human precision neuromodulation of pain circuits Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS VANDERBILT UNIVERSITY MEDICAL CENTER CASKEY, CHARLES F (contact); CHEN, LI MIN Nashville, TN 2023
NOFO Title: Blueprint MedTech Translator (UG3/UH3 - Clinical Trial Optional)
NOFO Number: PAR-21-315
1R61NS127287-01
Initial Development of AEG-1 Inactivation as a Possible Strategy for Pain Treatment Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS Virginia Commonwealth University DAMAJ, M IMAD (contact); SARKAR, DEVANAND Richmond, Virginia 2022
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development [Small Molecules and Biologics] (R61 Clinical Trial Not Allowed)
NOFO Number: NS21-029
Summary:

There is a continued need to discover and validate new targets for potential therapeutic strategies for effective and safe treatment of pain. This project focuses on the protein metadherin, also known as astrocyte elevated gene-1 protein (AEG-1), as a possible new target for pain treatment. Preliminary studies have shown that mice genetically engineered to lack metadherin had significantly lower inflammation and chronic pain-related behaviors. This project aims to further validate AEG-1 as a pain target and test whether reducing levels in white blood cells called macrophages might work as a therapeutic strategy to reduce chronic inflammatory and/or neuropathic pain using an innovative nanoparticle approach to target specific cells.

3R01NS093990-04S1
S1P RECEPTOR MECHANISMS IN NEUROPATHIC PAIN Preclinical and Translational Research in Pain Management NINDS VIRGINIA COMMONWEALTH UNIVERSITY SIM-SELLEY, LAURA J; HAUSER, KURT F; LICHTMAN, ARON H; SELLEY, DANA E RICHMOND, VA 2018
NOFO Title: Mechanisms, Models, Measurement, & Management in Pain Research (R01)
NOFO Number: PA-13-118
Summary:

Chronic pain diminishes the quality of life for millions of patients, and new drugs that have better efficacy and/or fewer side effects are needed. A promising target is the sphingosine-1-phosphate (S1P) receptor system, which mediates central nervous system (CNS) neuromodulatory functions. FTY720-phosphate, the active metabolite of FTY720 (FTY), acts as an agonist at four of the five S1P receptors (S1P1, 3, 4, 5). We propose that the S1P1 receptor is a target for treatment of neuropathic pain. We will test whether S1P1 receptors mediate anti-hyperalgesic effects in a mouse neuropathic pain model. The specific aims are to: 1) determine the role of S1P1Rs in alleviation of neuropathic pain by S1PR ligands; 2) determine the role of FTY-induced S1PR adaptation in FTY-mediated reversal of neuropathic pain; and 3) determine the role of S1P and S1P1 receptors in spinal glia in CCI-induced neuropathic pain and its reversal by FTY.

1R61NS133217-01
A Novel Assay to Improve Translation in Analgesic Drug Development Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS VIRGINIA COMMONWEALTH UNIVERSITY NEGUS, SIDNEY S Richmond, VA 2023
NOFO Title: Development and Validation of Pain-Related Models and Endpoints to Facilitate Non-Addictive Analgesic Discovery
NOFO Number: NOT-NS-22-095
Summary:

Effective development of non-addictive therapies for pain requires animal models that reflect the human condition. Unfortunately, currently used models have limitations and have not always done a good job of predicting what will work in human patients. This project will refine a new way of measuring pain-related behaviors in mice that takes advantage of more natural mouse behavior and is less influenced by experimenter biases and artifacts. The research will verify that the promising results hold up in several different types of pain and that different classes of clinically used pain medications are effective. They will also make sure the data can be reproduced by an outside laboratory. If successful, this will support the use of this new read-out for future pain therapy development.

1R01NS103350-01A1
Regulation of Trigeminal Nociception by TRESK Channels Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS WASHINGTON UNIVERSITY CAO, YUQI St. Louis, MO 2018
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

TWIK-related spinal cord K+ (TRESK) channel is abundantly expressed in all primary afferent neurons (PANs) in trigeminal ganglion (TG) and dorsal root ganglion (DRG), mediating background K+ currents and controlling the excitability of PANs. TRESK mutations cause migraine headache but not body pain in humans, suggesting that TG neurons are more vulnerable to TRESK dysfunctions. TRESK knock out (KO) mice exhibit more robust behavioral responses than wild-type controls in mouse models of trigeminal pain, especially headache. We will investigate the mechanisms through which TRESK dysfunction differentially affects TG and DRG neurons. Based on our preliminary finding that changes of endogenous TRESK activity correlate with changes of the excitability of TG neurons during estrous cycles in female mice, we will examine whether estrogen increases migraine susceptibility in women through inhibition of TRESK activity in TG neurons. We will test the hypothesis that frequent migraine attacks reduce TG TRESK currents.

3R01NS103350-02S1
REGULATION OF TRIGEMINAL NOCICEPTION BY TRESK CHANNELS Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS WASHINGTON UNIVERSITY CAO, YUQING SAINT LOUIS, MO 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

TWIK-related spinal cord K+ (TRESK) channel is abundantly expressed in all primary afferent neurons (PANs) in trigeminal ganglion (TG) and dorsal root ganglion (DRG), mediating background K+ currents and controlling the excitability of PANs. TRESK mutations cause migraine headache but not body pain in humans, suggesting that TG neurons are more vulnerable to TRESK dysfunctions. TRESK knock out (KO) mice exhibit more robust behavioral responses than wild-type controls in mouse models of trigeminal pain, especially headache. We will investigate the mechanisms through which TRESK dysfunction differentially affects TG and DRG neurons. Based on our preliminary finding that changes of endogenous TRESK activity correlate with changes of the excitability of TG neurons during estrous cycles in female mice, we will examine whether estrogen increases migraine susceptibility in women through inhibition of TRESK activity in TG neurons. We will test the hypothesis that frequent migraine attacks reduce TG TRESK currents.

1U19NS130607-01
INTERCEPT: Integrated Research Center for Human Pain Tissues Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS WASHINGTON UNIVERSITY GEREAU, ROBERT W Saint Louis, MO 2022
NOFO Title: HEAL Initiative: Discovery and Functional Evaluation of Human Pain-associated Genes and Cells (U19 Clinical Trial Not Allowed)
NOFO Number: NS22-018
Summary:

This project will use a variety of state-of-the-art technologies to generate a comprehensive  gene expression map of human peripheral nerves. The research will enhance understanding about genes involved in various painful conditions associated with nerve damage (neuropathies) resulting from injury or disease. This research will analyze DNA sequences of individual neuronal and non-neuronal cells in human nerve cells (from individuals with and without pain located outside the spinal cord that are involved in pain signal transmission. The findings, together with other imaging and computational approaches, will be used to generate a spatial atlas of the human dorsal root ganglia – a key hub for pain communication between the brain and spinal cord.

1R21NS132565-01
Discovery of the Novel Targets for Post-Traumatic Headache Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS WASHINGTON UNIVERSITY CAO, YUQING Saint Louis, MO 2023
NOFO Title: Emergency Awards: HEAL Initiative-Early-Stage Discovery of New Pain and Opioid Use Disorder Targets Within the Understudied Druggable Proteome (R21 Clinical Trial Not Allowed)
NOFO Number: RFA-TR-22-011
Summary:

Chronic post-traumatic headache (PTH) is highly debilitating, poorly understood, and difficult to treat. This project aims to identify proteins located in the membrane of certain neurons that are critical for the development, maintenance, and/or resolution of PTH. These proteins may be targets for novel treatment approaches that are nonaddictive and have minimal side effects.

3R01DK103901-04S1
TARGETING THE TRANSIENT RECEPTOR POTENTIAL CHANNELS TO IMPROVE BOWEL DYSFUNCTION Preclinical and Translational Research in Pain Management NIDDK WASHINGTON UNIVERSITY HU, HONGZHEN SAINT LOUIS, MO 2018
NOFO Title: Research Project Grant (Parent R01)
NOFO Number: PA-13-302
Summary:

Postoperative ileus (POI) following gastrointestinal (GI) surgery leads to significant patient morbidity and prolonged hospitalizations. Recent studies have demonstrated that intestinal manipulation and surgical trauma activate inflammatory macrophages (M?) and release inflammatory mediators such as nitric oxide (NO) to inhibit intestinal smooth muscle cells in POI. Intestinal M? are a highly heterogeneous and dynamic population in the innate immune system. Preliminary studies show that transient receptor potential vanilloid 4 (TRPV4) channel, a molecular sensor of tissue damage and inflammation, is exclusively expressed by the F4/80+/CD206+ intestinal anti-inflammatory M2 M?. Activation of TRPV4 produces an intestinal contractile response and improves GI transit in a mouse model of POI. The current proposal aims to elucidate the cellular and molecular mechanisms underlying the activation of TRPV4 in the intestinal M2 M?.

1UG3NS114947-01
Novel HCN1-selective small molecule inhibitors for the treatment of neuropathic pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS WEILL MEDICAL COLL OF CORNELL UNIV GOLDSTEIN, PETER A New York, NY 2019
NOFO Title: Optimization of Non-addictive Therapies [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-19-010
Summary:

Neuropathic pain is characterized by neuronal hyperexcitability and spontaneous activity, properties associated with activity of hyperpolarization-activated, cyclic nucleotide-regulated (HCN1-4) channels, the source of the pacemaker current, Ih. Inhibition of HCN1-mediated Ih elicits marked antihyperalgesia in multiple animal models of neuropathic pain, including models for direct nerve injury and chemotherapy-induced peripheral neuropathy, and does so with little or no disruption to either normal pain processing or baseline behaviors and activities. The overall objective is to develop a peripherally restricted HCN1 inverse-agonist as a therapeutic for neuropathic pain. Researchers have generated a novel small molecule that combines an antihyperalgesic HCN1 inhibitor with a motif that controls distribution and membrane presentation and is a potential non-opioid antihyperalgesic treatment for peripheral neuropathic pain.