Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Sort descending Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Year Awarded
3U44NS115692-01S1 Development and Optimization of MNK Inhibitors for the Treatment of Neuropathic Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS 4E THERAPEUTICS INC. SAHN, JAMES JEFFREY Austin, TX 2020
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008
Summary:

There is an urgent unmet need for more efficacious analgesics that act via a non-opioid pathway. Mitogen Activated Protein Kinase-interacting kinase 2 (MNK2) is an enzyme that has been implicated in pain signaling, and there is compelling evidence that inhibiting MNK2 has significant pain-reducing effects with few side-effects. Since MNK2 selective inhibitors have not yet been identified, selective inhibition of MNK2 with a small molecule has not been possible. The development of such compounds will enable studies that will illuminate key differences between MNK2 and MNK1. More importantly, from a therapeutic standpoint, highly selective MNK2 inhibitors may prove to have enhanced efficacy and a more favorable side-effect profile than molecules that inhibit both MNK2 and MNK1. This project will support the design and synthesis of at least one MNK2 inhibitor, with >100-fold selectivity over MNK1, that may be developed into a lead compound for treating neuropathic pain.

3UG3TR002151-01S1 INTEGRATED MICROPHYSIOLOGICAL SYSTEM OF CEREBRAL ORGANOID AND BLOOD VESSEL FOR DISEASE MODELING AND NEUROPSYCHIATRIC DRUG SCREENING Preclinical and Translational Research in Pain Management NCATS COLUMBIA UNIVERSITY HEALTH SCIENCES LEONG, KAM W NEW YORK, NY 2018
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

The clinical utility of opioids for pain treatment is limited by its risk for developing opioid usage disorders (OUD). These untoward effects impose a severe burden on society and present difficult therapeutic challenges for clinicians. We propose to extend our cerebral organoid MPS to facilitate the investigation of neuronal response to opioids and identify cellular and molecular signatures in patients vulnerable to OUD. We have assembled a team with complementary expertise in clinical characterization of OUD, cerebral organoid MPS modeling, single cell RNA-seq technology, and functional characterization of neurons in a mesolimbic reward system to test the hypothesis that midbrain MPS is a clinically relevant pre-clinical model for study of opioid usage disorder.

3UG3TR003149-02S1 Supplement to hiPSC-based DRG Tissue Mimics on Multi-well Microelectrode Arrays as a Tissue Chip Model of Acute and Chronic Nociception Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NCATS UNIVERSITY OF TEXAS DALLAS BLACK, BRYAN JAMES Dallas, TX 2020
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008
Summary:

This study aims to determine whether a subset of understudied genes that are expressed in human and mouse dorsal root ganglia (DRG) tissues (critical for relaying the sensation of pain from the body to the central nervous system), are also expressed in human induced pluripotent stem cell DRG mimetics. The study will also determine if these genes are involved in neuronal excitability changes under inflammatory conditions and compare these responses to those of primary DRG neurons. Third and finally, the study will optimize genetic depletion of target genes enabling future fundamental and preclinical research studies.

3UH3NS113661-02S1 Deep Brain Stimulation of the Subgenual Cingulate Cortex for the Treatment of Medically Refractory Chronic Low Back Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS UNIVERSITY OF CALIFORNIA LOS ANGELES BARI, AUSAF; POURATIAN, NADER Los Angeles, CA 2020
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-18-906 Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-023
Summary:

A current obstacle to developing more effective therapies for chronic low back pain is the lack of clinical trials assessing the feasibility and potential effectiveness of promising new targets for neuromodulation. This project will explore the feasibility of using deep brain stimulation of a new brain target for treating chronic low back pain. The study will also explore imaging biomarkers in patients with chronic low back pain that can be used to predict whether someone is a candidate or may respond to deep brain stimulation therapy, to guide programming and patient selection for this therapy in the future.

3UH3NS116218-02S1 Novel mGlu5 Negative Allosteric Modulators as First-in-Class Non-Addictive Analgesic Therapeutic Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS Vanderbilt University ROOK, JERRI MICHELLE Nashville, TN 2022
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements. Parent Grant: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: Supplement: PA-20-272; Parent NOFO: NS-21-010
Summary:

Negative allosteric modulators (NAMs) of the metabotropic glutamate (mGlu) receptor, mGlu5, have shown promise for treatment of multiple pain conditions without the serious adverse effects and safety concerns associated with opioids. This project will develop and test a novel series of highly selective mGlu5 NAMs that are structurally unrelated to earlier failed compounds and do not form toxic byproducts as with previous mGlu5 NAMs. A lead candidate is now being characterized in several studies to assess readiness for testing in Phase I clinical studies.

4UH3NS123964-02 Disease Modifying Analgesia with CA8 Gene Therapy Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS UNIVERSITY OF MIAMI SCHOOL OF MEDICINE LEVITT, ROY C Coral Gables, FL 2023
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
5R01DA038645-05 KOR AGONIST FUNCTIONAL SELECTIVITY IN PERIPHERAL SENSORY NEURONS Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDA UNIVERSITY OF TEXAS HLTH SCIENCE CENTER CLARKE, WILLIAM P; BERG, KELLY ANN SAN ANTONIO, TX 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Functional selectivity is a term used to describe the ability of drugs to differentially regulate the activity of multiple signaling cascades coupled to the receptor. The underlying mechanism for functional selectivity is based upon the formation of ligand-specific receptor conformations that are dependent upon ligand structure. Functional selectivity has the potential to revitalize the drug discovery/development process. Ligands with high efficacy for specific signaling pathways (or specific patterns of signaling) that mediate beneficial effects, and with minimal activity at pathways that lead to adverse effects, are expected to have improved therapeutic efficacy. We propose to demonstrate that ligand efficacy for specific signaling pathways associated with antinociception can be finely tuned by structural modifications to a ligand. We propose to use U50,488 and Salvinorin-A (Sal-A) as scaffolds to develop functionally selective analogs that maintain high efficacy for signaling pathways that lead to antinociception and minimize activity toward anti-antinociceptive signaling pathways.

5R01DE027454-02 Modeling temporomandibular joint disorders pain: role of transient receptor potential ion channels Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDCR Duke University Chen, Yong Durham, NC 2019
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

Masticatory and spontaneous pain associated with temporomandibular joint disorders (TMJD) is a significant contributor to orofacial pain, and current treatments for TMJD pain are unsatisfactory. Pain-related transient receptor potential (TRP) channels, expressed by trigeminal ganglion (TG) sensory neurons, have been implicated in both acute and chronic pain and represent possible targets for anti-pain strategies. Using bite force metrics, we found TMJ inflammation-induced masticatory pain to be significantly, but not fully, reversed in Trpv4 knockout mice, suggesting the residual pain might be mediated by other pain-TRPs. Our gene expression studies demonstrated that TRPV1 and TRPA1 were up-regulated in the TG in response to TMJ inflammation in a Trpv4-dependent manner. We hypothesize that TRPV1 and TRPA1, like TRPV4, contribute to TMJ pain. Our specific aims will examine the contribution of TRPV1, TRPV4, and TRPA1 to pathogenesis of TMJD pathologic pain including assessment of the role of neurogenic inflammation.

5R01NS094461-04 Clustering of individual and diverse ion channels together into complexes, and their functional coupling, mediated by A-kinase anchoring protein 79/150 in neurons Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TEXAS HLTH SCI CTR SAN ANTONIO SHAPIRO, MARK S San Antonio, TX 2018
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

Multi-protein complexes have emerged as a mechanism for spatiotemporal specificity and efficiency in the function and regulation of cellular signals. Many ion channels are clustered either with the receptors that modulate them or with other ion channels whose activities are linked. Often, the clustering is mediated by scaffolding proteins, such as AKAP79/150. We will probe complexes containing AKAP79/150 and three different channels critical to nervous function: KCNQ/Kv7, TRPV1, and CaV1.2. We will use"super-resolution" STORM imaging of primary sensory neurons and heterologously expressed tissue-culture cells, in which individual complexes can be visualized at 10–20 nm resolution with visible light. We hypothesize that AKAP79/150 brings several of these channels together to enable functional coupling, which we will examine by patch-clamp electrophysiology of the neurons. Since all three of these channels bind to AKAP79/150, we hypothesize that they co-assemble into complexes in neurons and that they are dynamically regulated by other cellular signals.

5R01NS097880-02 Regulation of neuropathic pain by exercise: effects on nociceptor plasticity and inflammation Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS DREXEL UNIVERSITY DETLOFF, MEGAN R Philadelphia, PA 2018
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

Spinal cord injury (SCI) impairs sensory transmission leading to chronic, debilitating neuropathic pain. While our understanding of the molecular basis underlying the development of chronic pain has improved, the available therapeutics provide limited relief. In the lab, we have shown the timing of exercise is critical to meaningful sensory recovery. Early administration of a sustained locomotor exercise program in spinal cord–injured rats prevents the development of neuropathic pain, while delaying similar locomotor training until pain was established was ineffective at ameliorating it. The time elapsed since the injury occurred also indicates the degree of inflammation in the dorsal horn. We have previously shown that chronic SCI and the development of neuropathic pain correspond with robust increases in microglial activation and the levels of pro-inflammatory cytokines. This proposal seeks to lengthen the therapeutic window where rehabilitative exercise can successfully suppress neuropathic pain by pharmacologically reducing inflammation in dorsal root ganglia.

5R01NS102432-02 AIBP and regulation of neuropathic pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS Univ. of Calif., U.C. San Diego Miller, Yury La Jolla, CA 2018
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

Persistent pain states arising from inflammatory conditions, such as in arthritis, diabetes, HIV, and chemotherapy, exhibit a common feature in the release of damage-associated molecular pattern molecules, which can activate toll-like receptor-4 (TLR4). Previous studies suggest that TLR4 is critical in mediating the transition from acute to persistent pain. TLR4 as well as other inflammatory receptors localize to lipid raft microdomains on the plasma membrane. We have found that the secreted apoA-I binding protein (AIBP) accelerates cholesterol removal, disrupts lipid rafts, prevents TLR4 dimerization, and inhibits microglia inflammatory responses. We propose that AIBP targets cholesterol removal to lipid rafts harboring activated TLR4. The aims of this proposal are to: 1) determine whether AIBP targets lipid rafts harboring activated TLR4; 2) test whether AIBP reduces glial activation and neuroinflammation in mouse models of neuropathic pain; and 3) identify the origin and function of endogenous AIBP in the spinal cord.

5R01NS104295-03 Cellular and Molecular Role of CXCR4 signaling in Painful Diabetic Neuropathy Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS Northwestern University MENICHELLA, DANIELA M Evanston, IL 2019
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

Neuropathic pain is a debilitating affliction present in 26% of diabetic patients, with substantial impact on the quality of life. Despite this significant impact and prevalence, current therapies for painful diabetic neuropathy (PDN) are only partially effective, and the molecular mechanisms underlying neuropathic pain in diabetes are not well understood. Our long-term goal is to elucidate the molecular mechanisms responsible for PDN in order to provide targets for the development of therapeutic agents. Our objective is to identify the molecular cascade linking CXCR4/SDF-1 chemokine signaling to DRG nociceptor hyper-excitability, neuropathic pain, and small fiber degeneration. Our aims will determine: 1) the ion-channel current profile of the nociceptor hyper-excitable state produced by CXCR4/SDF-1 signaling in PDN; 2) the gene expression profile of the nociceptor hyper-excitable state produced by CXCR4/SDF-1 signaling in PDN; and 3) the specific features of nociceptor mitochondrial dysfunction produced by CXCR4/SDF-1 signaling in PDN.