Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Sort descending Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Year Awarded
1RM1NS128787-01
Understanding the Mechanistic, Neurophysiological, and Antinociceptive Effects of Transcutaneous Auricular Neurostimulation for Treatment of Chronic Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS University of Texas Med BR WILKES, DENISE (contact); BADRAN, BASHAR W; HOUGHTON, DAVID C; KHODAPARAST, NAVID Galveston, TX 2022
NOFO Title: HEAL Initiative: Interdisciplinary Teams to Elucidate the Mechanisms of Device-Based Pain Relief (RM1 Clinical Trial Optional)
NOFO Number: NS22-016
Summary:

Despite the need for non-opioid treatments for chronic pain, few alternative treatment approaches exist. Transcutaneous auricular neurostimulation (tAN) is a safe and effective treatment for pain during opioid withdrawal; however, researchers do not understand how tAN reduces pain, which limits its clinical use. A better understanding of how tAN affects neurophysiological processes to provide pain relief would likely expand tAN development and use. This interdisciplinary project will conduct research in both healthy adults and those with chronic pain to explain the neurochemical and neurophysiological mechanisms for tAN-based pain relief, and also help optimize treatments and their use.

1R01NS116759-01
Validating ASCT2 for the Treatment of Chronic Postsurgical Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF MARYLAND BALTIMORE MELEMEDJIAN, OHANNES KEVORK Baltimore, MD 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Pain associated with surgery is experienced by millions of patients every year. Although post-surgical pain usually resolves as the surgical site heals, up to half of the patients develop chronic pain after surgery. Opioids remain the mainstay treatment for post-surgical pain which are fraught with serious side-effects and abuse liabilities. The endogenous mechanism that leads to the resolution of post-surgical pain remain unclear, specifically the effects of surgery on the metabolism of sensory neurons and how those changes influence the resolution of post-surgical pain are not known. Preliminary findings suggest that surgical trauma suppresses pyruvate oxidation while increased glutamine catabolism was associated with the resolution of post-surgical pain. This project will test the hypothesis that tissue incision and surgery disrupt the expression of the glutamine transporter ASCT2, which then prevents the resolution of post-incisional pain and aims to validate ASCT2 as a therapeutic target. This project will also employ pharmacological, genetic and animal pain model studies test a novel RNA expression-based strategy to enhance ASCT2 expression in DRG sensory neurons and alleviate postoperative pain in animal model systems. Successful completion of this project would validate ASCT2 as a novel endogenous non-opioid and non-addictive mechanism-based target for the resolution of postoperative pain.

1RF1NS134549-01
Validation of a New Large-Pore Channel as a Novel Target for Neuropathic Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS JOHNS HOPKINS UNIVERSITY QIU, ZHAOZHU (contact); GUAN, YUN Baltimore, MD 2023
NOFO Title: HEAL Initiative: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-22-034
Summary:

Activation of immune cells (microglia) in the central nervous system and neuroinflammation have emerged as key drivers of neuropathic pain. These processes can be triggered by release of ATP, the compound that provides energy to many biochemical reactions. The source and mechanism of ATP release are poorly understood but could be targets of novel treatment approaches for neuropathic pain. This project will use genetic, pharmacological, and electrophysiological approaches to determine whether a large pore channel called Swell 1 that spans the cell membrane is the source of ATP release and resulting neuropathic pain and thus could be a treatment target.

1R61NS113269-01
Validation of a novel cortical biomarker signature for pain Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS University of Maryland, Baltimore SEMINOWICZ, DAVID Baltimore, MD 2019
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

Chronic pain is a major health burden associated with immense economic and social costs. Predictive biomarkers that can identify individuals at risk of developing severe and persistent pain, which is associated with worse disability and greater reliance on opioids, would promote aggressive, early intervention that could halt the transition to chronic pain. The applicant’s team uncovered evidence of a unique cortical biomarker signature that predicts pain susceptibility (severity and duration). This biomarker signature could be capable of predicting the severity of pain experienced by an individual minutes to months in the future, as well as the duration of pain (time to recovery). Analytical validation of this biomarker will be conducted in healthy participants using a standardized model of the transition to sustained myofascial temporomandibular pain. Specifically the biomarker signature will be tested for its ability to predict an individual’s pain sensitivity, pain severity, and pain duration and will perform initial clinical validation.

1R01DE029202-01
Validation of blocking TSP4/Cava2d1 interaction as a new target for neuropathic pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDCR UNIVERSITY OF CALIFORNIA-IRVINE LUO, ZHIGANG DAVID Irvine, CA 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Validation of novel pain targets is a critical step toward the development of new non-addictive therapeutic agents for chronic pain management. Recent findings suggest that nerve injury-induced concurrent upregulation of the calcium channel alpha-2delta-1 subunit (CaValpha-2-delta-1) and thrombospondin-4 (TSP4) proteins in sensory and spinal cord neurons contributes to neuropathic pain development. Specifically, induction of aberrant excitatory synapse formation and sensitization of neurotransmission in spinal cord underlies this process; accordingly, a target site has been identified in the TSP4 that plays a critical role in mediating these pathological changes upon interaction with the CaValpha-2-delta-1 protein. This project will validate this novel target site in TSP4 for development of non-addictive pain medications, utilizing multidisciplinary approaches to investigate if blocking and genetic deletion of the target site can block or prevent the development of chronic pain state, aberrant excitatory synapse formation, and spinal cord neuron sensitization after injury in multiple rodent neuropathic pain models.

1R01NS116704-01
Validation of Fibroblast-Derived PI16 as a Novel Target for pain Treatment Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TX MD ANDERSON CAN CTR KAVELAARS, ANNEMIEKE; HEIJNEN, COBI J Houston, TX 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

This project aims to validate Peptidase Inhibitor 16 (PI16) as a novel target for the treatment of chronic pain using mouse models and tissues of human patients with neuropathy. PI16 was identified as a novel regulator of chronic pain in preclinical bench studies. PI16 is a small molecule that has not been studied in the context of pain. Mice that are deficient for PI16 function are protected against mechanical allodynia (tactile pain from light touch) in spared nerve injury (SNI) and paclitaxel models of neuropathic pain. PI16 is only detectable in fibroblasts around peripheral nerves (perineurium), and in the meninges of dorsal root ganglia (DRG), spinal cord, and brain, but not in neurons, glia or leukocytes. PI16 levels in perineurial and DRG meningeal fibroblasts increase during neuropathic pain. Increased PI16 secretion by DRG meningeal and perineurial fibroblasts may promote chronic pain by increasing blood nerve barrier (BNB) permeability and leukocyte trafficking into nerve and DRG.

1R01NS131165-01A1
Validation of Neuropilin-1 Receptor Signaling in Nociceptive Processing Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS NEW YORK UNIVERSITY KHANNA, RAJESH New York, NY 2023
NOFO Title: HEAL Initiative: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-22-034
Summary:

Neuropilin 1 receptor (NRP1) is a protein receptor that is active in neurons and is hypothesized to be a key mediator of sensory neuron sensitization that can lead to pain. This project will study the cellular mechanisms by which NRP1 leads to sensitization and which cell types—sensory neurons, microglia, or both—are responsible for NRP1’s role in pain. The findings can help validate NRP1 in sensory neurons and the spinal cord as a target to treat pain following nerve injury.

1R01AR077890-01
Validation of Novel Target for OA Treatment Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF ILLINOIS AT CHICAGO SAMPEN, HEE-JEONG IM; LASCELLES, DUNCAN Chicago, IL 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Osteoarthritis (OA) is the most common form of arthritis and a leading cause of pain and disability. Current challenges of managing OA are that there is no OA disease-modifying drug available, there are few effective treatment strategies, and there is an over-reliance on the use of opioids to manage OA-related joint pain. This project aims to validate vascular endothelial growth factor receptors 1 and 2 (VEGFR 1 receptor = Flt1) and (VEGFR 2 receptor = Flk1) as novel therapeutic targets for OA. This is based on a hypothesis that blocking these two specific receptors of VEGF will inhibit cartilage tissue degeneration and alleviate pain symptoms. This study will test the role of VEGFR-1 and -2 in multiple OA animal models using multiple available VEGF inhibitor molecules. The findings from these studies will develop a rationale for future clinical trials to target VEGFR-1 and -2 for OA patients and develop a novel non-addictive treatment for both joint pain and OA pathology.

1R01DK123138-01
Validation of peripheral CGRP signaling as a target for the treatment of pain in chronic pancreatitis Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDDK JOHNS HOPKINS UNIVERSITY PASRICHA, PANKAJ J Baltimore, MD 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Chronic pancreatitis (CP) and the debilitating pain associated with it remains a common and challenging clinical syndrome that is difficult to treat effectively. Using rodent models of CP, preliminary studies have found that nerve growth factor (NGF) and transforming growth factor beta (TGFb) appear to be acting by the common effector, calcitonin-gene related peptide (CGRP), to induce pain in CP. CGRP is known to mediate pain as a neurotransmitter in the central nervous system, specifically as a potent vasodilator involved in migraine. This project will test the hypothesis that peripheral CGRP is a major mediator of peripheral nociceptive sensitization in CP, and that peripherally restricted anti-CGRP treatment could provide an efficient and sufficient approach for the treatment of pain in pancreatitis

1RF1NS135580-01
Validation of Prenatal Rabbit Hypoxia Ischemia as a Model of Cerebral Palsy-Induced Pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS UNIVERSITY OF RHODE ISLAND QUINLAN, KATHARINA ANN (contact); DETLOFF, MEGAN R Kingston, RI 2023
NOFO Title: HEAL Initiative: Development and Validation of Non-Rodent Mammalian Models of Pain (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-22-070
Summary:

Cerebral palsy (CP), the leading cause of childhood disabilities in the United States, refers to a group of neurological disorders that appear in infancy or early childhood and permanently affect body movement and muscle coordination. The experience of pain is one of the most common, poorly understood, and inadequately treated conditions in CP, impairing health and quality of life for both patients and caregivers. To understand why pain and motor dysfunction occur together, a model that accurately replicates both is needed. This project will validate an established, rabbit model of CP motor dysfunction for use in studying and developing effective treatments for CP-associated pain.

1R01NS116694-01
Validation of Spinal Neurotensin Receptor 2 as an Analgesic Target Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF ARIZONA PATWARDHAN, AMOL M Tuscon, AZ 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Epidural/spinal administration of analgesics such as opioids, ziconotide and local anesthetics have profound efficacy in some of the most intractable pain conditions such as severe neuropathic pain after failed back surgery, cancer pain and post-operative pain after major abdominal/thoracic surgeries. Contulakin G (CGX) is a snail venom derived peptide that has homology with mammalian neurotensin and was shown to be safe in humans in preliminary studies. A small pilot study demonstrated CGX?s analgesic effect in some patients with spinal cord injury-associated pain. Preliminary findings from mechanistic studies in rodents identified neurotensin receptor 2 (NTSR2) as the mediator for analgesic effects of CGX. This project aims to validate spinal NTSR2 as an analgesic target utilizing three species (rat, mice and human), and two pain models (neuropathic pain and post-surgical pain). The project will utilize pharmacological and gene editing tools such as CRISPR-Cas9 and will include assessment of both sensory and affective measures of pain. A two-site parallel confirmation study is designed based on multisite clinical trials to further authenticate spinal NTSR2 as an analgesic target. Successful completion of this project could lead to the development of a non-opioid spinal analgesic that has high translational potential.

3R01NS097880-02S1
VALIDATION OF TARGETING MACROPHAGE-MEDIATED EVENTS IN THE DRG TO ALLEVIATE CHRONIC SPINAL CORD INJURY PAIN Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS DREXEL UNIVERSITY DETLOFF, MEGAN R PHILADELPHIA, PA 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

Spinal cord injury (SCI) impairs sensory transmission and leads to chronic, debilitating neuropathic pain. While our understanding of the development of chronic pain has improved, the available therapeutics provide limited relief. We will examine the peripheral immune and inflammatory response. Secondary inflammation in response to SCI is a series of temporally ordered events: an acute, transient upregulation of chemokines, followed by the recruitment of monocytes/macrophages and generation of an inflammatory environment at the lesion site in the spinal cord, but also surrounding primary nociceptors in the dorsal root ganglia (DRG). These events precede neuropathic pain development. Previous work indicates that after SCI, macrophage presence in the DRG correlates with neuropathic pain. We propose to study: 1) whether the phenotype of macrophages that infiltrate the DRG is different than those that persist chronically after SCI and 2) how manipulation of macrophage phenotype affects nociceptor activity and pain development.