Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Sort descending Institution(s) Investigator(s) Location(s) Year Awarded
3UH3AR076573-03S2
Randomized-controlled trial of virtual reality for chronic low back pain to improve patient-reported outcomes and physical activity: Understanding Patient Predictors of Response Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS CEDARS-SINAI MEDICAL CENTER SPIEGEL, BRENNAN Los Angeles, LA 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

Although digital health technologies are now widely available for both therapeutic and monitoring applications, there are wide variations in patient knowledge, attitudes, beliefs, and preferences regarding their uptake and effectiveness. There are also sociodemographic variations in willingness to participate in digital health research studies, both for chronic pain and other common disorders. However, few efforts have systematically examined patient-level predictors of digital health uptake and benefit among diverse individuals who experience chronic pain. This research will employ mixed methods to examine variations in engagement and benefit among diverse participants in a large clinical trial examining the benefits of virtual reality for treatment of chronic lower back pain.

3UH3AR076387-02S2
Fibromyalgia TENS in Physical Therapy Study (TIPS): An Embedded Pragmatic Clinical Trial Cross-Cutting Research Increasing Participant Diversity, Inclusion, and Engagement in HEAL Research NIAMS UNIVERSITY OF IOWA SLUKA, KATHLEEN A Iowa City, IA 2022
NOFO Title: HEAL Initiative: Notice of Special Interest (NOSI) regarding the Availability of Administrative Supplements to Support Strategies to Increase Participant Diversity, Inclusion and Engagement in Clinical Studies
NOFO Number: NOT-NS-22-066
Summary:

Fibromyalgia is a chronic pain condition characterized by widespread musculoskeletal pain, tenderness, stiffness, fatigue, and sleep disturbance. The FAST trial (Fibromyalgia Activity Study with transcutaneous electrical nerve stimulation [TENS]) was the first study to conclusively demonstrate the clinical value of TENS for treating musculoskeletal pain. While physical therapists are trained in the use of TENS, it is underused in clinical practice. This project will test TENS in fibromyalgia patients receiving physical therapy in a real-world physical therapy practice setting. This research will determine if adding TENS to physical therapy reduces pain, increases adherence to physical therapy and allows fibromyalgia patients to reach their self-defined functional goals with less use of medication.

1UC2AR082186-01
Mapping the Joint-Nerve Interactome of the Knee Preclinical and Translational Research in Pain Management Restoring Joint Health and Function to Reduce Pain (RE-JOIN) NIAMS RUSH UNIVERSITY MEDICAL CENTER MALFAIT, ANNE-MARIE; LOTZ, MARTIN K; MILLER, RICHARD J Chicago, IL 2022
NOFO Title: HEAL Initiative: Restoring Joint Health and Function to Reduce Pain Consortium (RE-JOIN) (UC2 Clinical Trial Not Allowed)
NOFO Number: RFA-AR-22-009
Summary:

This project will use a variety of technologies to create a comprehensive, 3D map of how sensory neurons activate knee joints in both mice and humans. The research will use imaging techniques and molecular approaches that measure gene expression. The findings will help create a comprehensive gene expression profile map of individual cells in the nerve fibers leading to the knee, as well as describe how nerve cells and joint cells interact at the most fundamental level. This research will generate a rich anatomical and molecular resource to understand the molecular basis of joint pain and guide the development of novel pain-relieving strategies.

1K99AR083482-01
Elucidating the Neuroimmune Mechanisms Underlying Pain and Inflammation in Autoimmune Arthritis Cross-Cutting Research Training the Next Generation of Researchers in HEAL NIAMS BOSTON CHILDREN'S HOSPITAL JAIN, AAKANKSHA Boston, MA 2023
NOFO Title: HEAL Initiative Advanced Postdoctoral-to-Independent Career Transition Award in PAIN and SUD Research (K99/R00 Independent Clinical Trial Not Allowed)
NOFO Number: RFA-NS-22-022
Summary:

Rheumatoid arthritis is an autoimmune disease characterized by episodes of joint inflammation and pain. There are currently no safe and effective treatments that achieve long-term remission of the condition or the associated pain. Many patients use opioid medications to manage the pain and are at increased risk of developing opioid use disorder; therefore, additional treatment options are needed. In rheumatoid arthritis, pain-triggering sensory neurons interact with immune cells in the joints. This project aims to dissect the neuroimmune crosstalk underlying pain and inflammation in arthritic joints and uncover novel therapeutic avenues for this painful condition.

3U19AR076725-01S3
HEALing LB3P: Profiling Biomechanical, Biological and Behavioral phenotypes Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF PITTSBURGH AT PITTSBURGH SOWA, GWENDOLYN A Pittsburgh, PA 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

Identifying optimal chronic low back pain treatments on a patient-specific basis is an important and unresolved challenge. Tailoring interventions according to patient movement characteristics is one option. This research is characterizing patients based on spinal motion during functional tasks and daily activities and will use artificial intelligence to objectively characterize motions of the spine during both clinical assessments and day-to-day life. During clinical assessments, participants will be asked to perform functional tasks while wearing motion sensors. Data collected from the sensors will be used to identify tasks of interest, such as activities of daily living and aberrant/painful motions. An artificial intelligence approach will then interpret data collected continuously during assessment in patients’ homes over a 7-day testing period. Ultimately, this data could be used to help clinicians tailor treatments that are responsive to a patient’s real-world functional impairments.

3UH3AR076729-02S1
The Spine Phenome Project: Enhancing Patient Diversity Cross-Cutting Research Increasing Participant Diversity, Inclusion, and Engagement in HEAL Research NIAMS OHIO STATE UNIVERSITY MARRAS, WILLIAM STEVEN Columbus, OH 2022
NOFO Title: HEAL Initiative: Notice of Special Interest (NOSI) regarding the Availability of Administrative Supplements to Support Strategies to Increase Participant Diversity, Inclusion and Engagement in Clinical Studies
NOFO Number: NOT-NS-22-066
Summary:

Chronic pain is a debilitating medical condition that affects roughly 50 million people in the United States. Current diagnostics and treatments rely primarily on subjective metrics and do not target the unique biological, psychological, and social factors that contribute to an individual’s pain. This project is part of the NIH Back Pain Consortium (BACPAC) program, a patient-centered effort to address the need for effective and personalized therapies for chronic low back pain. This research will enhance patient diversity within the BACPAC research participant population.

3U19AR076725-01S2
HEALing LB3P: Profiling Biomechanical, Biological and Behavioral phenotypes Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF PITTSBURGH AT PITTSBURGH SOWA, GWENDOLYN A Pittsburgh, PA 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for Administrative Supplements to Support Career Enhancement Related to Clinical Research on Pain (Admin Supp – Clinical Trial Not Allowed)
NOFO Number: NOT-NS-21-048
Summary:

Identifying optimal chronic low back pain treatments on a patient-specific basis is an important and unresolved challenge. Tailoring interventions according to patient movement characteristics is one option. This research is characterizing patients based on spinal motion during functional tasks and daily activities and will use artificial intelligence to objectively characterize motions of the spine during both clinical assessments and day-to-day life. During clinical assessments, participants will be asked to perform functional tasks while wearing motion sensors. Data collected from the sensors will be used to identify tasks of interest, such as activities of daily living and aberrant/painful motions. An artificial intelligence approach will then interpret data collected continuously during assessment in patients’ homes over a 7-day testing period. Ultimately, this data could be used to help clinicians tailor treatments that are responsive to a patient’s real-world functional impairments.

1UH2AR076719-01
Novel imaging of endplate biomarkers in chronic low back pain Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF CALIFORNIA, SAN FRANCISCO FIELDS, AARON J (contact); KRUG, ROLAND San Francisco, CA 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

This project will examine the association between end plate pathology and chronic low back pain (cLBP) and improve patient selection by developing and translating new imaging tools, technologies, and/or methods (iTTM) that provide accurate, noninvasive measures of end plate pathologies. A search for clinically relevant biomarkers of end plate pathology will focus on novel imaging measures of end plate bone marrow lesion (BML) severity with IDEAL MRI and cartilage endplate (CEP) fibrosis/damage with UTE MRI, assess interactions with paraspinal muscles, and identify metrics that associate with pain, disability, and degeneration. The research will refine imaging and post-processing methodologies by leveraging and expanding existing cross-sectional cohorts and then deploy and validate the new end plate iTTM to other BACPAC sites to test the most promising metrics’ clinical utility. These studies will provide validated iTTM that are useful for addressing the end plates pathology’s role in cLBP, identifying sub-phenotypes, discovering pain mechanisms, uncovering treatment targets, and selecting patients.

3U19AR076734-01S3
University of Michigan BACPAC Mechanistic Research Center Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF MICHIGAN AT ANN ARBOR CLAUW, DANIEL J Ann Arbor, MI 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for Administrative Supplements to Support Career Enhancement Related to Clinical Research on Pain (Admin Supp – Clinical Trial Not Allowed)
NOFO Number: NOT-NS-21-048
Summary:

There are numerous pharmacological and non-pharmacological interventions for chronic low back pain, yet no treatment is universally effective. This award supports an early career physician to develop skills to prepare for a career in clinical pain research in an environment aiming to understand patient characteristics that predict differential responses to pain interventions and thus allow for tailored treatments. This research assesses the impact of mindfulness-based stress reduction on pain interference reported by people with chronic low back pain and explores neurobiological effects of mindfulness-based stress reduction through advanced imaging and clinical assessments.

1UH2AR076731-01
Development, Evaluation and Translation of Robotic Apparel for Alleviating Low Back Pain Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS HARVARD UNIVERSITY WALSH, CONOR Cambridge, MA 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

A primary factor contributing to acute or recurrent back injury is overexertion via excessive peak and cumulative forces on the back and the primary factors involved in the progression of acute low back injury to chronic low back pain (cLBP) include maladaptive motor control strategies, muscle hyperactivity, reduced movement variability, and the development of fear cognitions. This project will focus on the development of robotic apparel with integrated biofeedback components that can reduce exertion; encourage safe, varied movement strategies; and promote recovery. Robotic apparel will be capable of providing supportive forces to the back and hip joints through adaptive control algorithms that respond to dynamic movements and becoming fully transparent when assistance is no longer needed. This technology can be used to prevent cLBP caused by overexertion and provide a new tool to physical therapists and the clinical community to enhance rehabilitation programs.

1UH2AR076724-01
Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF CALIFORNIA, SAN FRANCISCO MAJUMDAR, SHARMILA San Francisco, CA 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

Despite the significance of spine disorders, there are few reliable methods to determine appropriate patient care and evaluate intervention effectiveness. The research and tool development take the critical next step in the clinical translation of faster, quantitative magnetic resonance imaging (MR) of patients with lower back pain. The multidisciplinary Technology Research Site (Tech Site) of BACPAC will develop Phase IV (i.e., technology optimization) technologies and/or methods (TTMs) to leverage two key technical advancements: development of machine learning-based, faster MR acquisition methods and machine learning for image segmentation and extraction of objective disease related features from images. The team will develop, validate, and deploy end-to-end deep learning-based technologies (TTMs) for accelerated image reconstruction, tissue segmentation, and detection of spinal degeneration to facilitate automated, robust assessment of structure-function relationships between spine characteristics, neurocognitive pain response, and patient-reported outcomes.

3UH3AR076568-02S1
Examining the effect of intersectional stigma on the treatment of negative affect in chronic low back pain Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF PITTSBURGH AT PITTSBURGH WASAN, AJAY D Pittsburgh, PA 2020
NOFO Title: HEAL Initiative: Notice of Special Interest (NOSI) regarding the Availability of Administrative Supplements to Support Strategies to Reduce Stigma in Pain Management and Opioid Use Disorder (OUD) and Treatment
NOFO Number: NOT-OD-20-101
Summary:

Patients with chronic low back pain, often have depressive and anxiety symptoms and use opioids all of which are associated with stigma. In turn stigma leads to decreased treatment seeking and adherence, increased depression and pain, and poor treatment outcomes. Intersection of these health-related stigmas may have synergistic effects. This study aims to enhance the findings of a clinical trial to test antidepressant medication and Enhanced Fear Avoidance Rehabilitation in patients with chronic low back pain and high levels of depression and anxiety. The effects of these intersecting types of stigma on the efficacy of the interventions will be evaluated to better understand the needs of the patient population and to inform development of a stigma reducing intervention that can be implemented care providers.

3UH3AR076724-03S1
Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS University of California, San Francisco MAJUMDAR, SHARMILA San Francisco, CA 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

Chronic low back pain affects millions of Americans and is difficult to treat. Currently, there are no reliable methods to determine the best treatment options for patients, or to objectively evaluate the effectiveness of various interventions. This research will develop an imaging technology that uses machine learning to make automated assessments of spine characteristics, pain response, and patient-reported outcomes in people with chronic low back pain. This award will be used to recruit and support two postdoctoral fellows from populations underrepresented in biomedicine. The research will focus on whether use of the imaging tool helps clarify clinical diagnoses, as measured by the level of agreement between radiologists before and after using the tool.

3R01AR064251-07S1
Osteoarthritis Progression And Sensory Pathway Alterations Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIAMS RUSH UNIVERSITY MEDICAL CENTER MALFAIT, ANNE-MARIE Chicago, IL 2020
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008
Summary:

There is an urgent need for new non-opioid therapeutic agents that treat the pain associated with Osteoarthritis (OA) ? a chronic, progressive disease that leads to pain in weightbearing joints, pain during movement, and pain at rest. This project will refine techniques for targeting several proteins expressed in sensory neurons associated with OA pain, with the goal of testing the potential of these proteins to serve as targets for development of effective, non-opioid painkillers.

1UH2AR076723-01
Wearable nanocomposite sensor system for diagnosing mechanical sources of low back pain and guiding rehabilitation Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS BRIGHAM YOUNG UNIVERSITY BOWDEN, ANTON E Provo, UT 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

Chronic low back pain (cLBP) is recurrent and often nonresponsive to conservative treatments. Biomechanists, physical therapists, and surgeons each utilize a variety of tools and techniques to assess and interpret qualitative movement changes to understand potential mechanical and neurological sources of low back pain and as critical elements in their treatment paradigm. However, objectively characterizing and communicating this information is currently impossible, since clinically feasible (i.e., cost-effective, objective, and accurate) tools and quantitative benchmarks do not exist. This research addresses the challenge to improve cLBP outcomes through the use of unique, inexpensive, screen-printable, elastomer-based, nanocomposite, piezoresponsive sensors, which will be integrated into a SPInal Nanosensor Environment (SPINE) sense system to measure lumbar kinematics and provide an objective, quantitative platform for diagnosis, monitoring, and follow-up assessment of cLBP.

1UH2AR076741-01
Imaging Epigenetic Dysregulation in Patients with Low Back Pain Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS MASSACHUSETTS GENERAL HOSPITAL WEY, HSIAO-YING Boston, MA 2019
NOFO Title: HEAL Initiative: Back Pain Consortium (BACPAC) Research Program Technology Research Sites (UH2/UH3 Clinical Trial Optional)
NOFO Number: RFA-AR-19-028
Summary:

Inhibitors of the epigenetic enzymes histone deacetylases (HDACs) produce analgesic responses and are therefore therapeutic targets for pain. The research team recently resolved a PET imaging agent, [11C]Martinostat, that selectively binds to a subset of HDAC enzymes. A series of initial proof-of-concept clinical validation studies will be conducted to evaluate whether [11C]Martinostat PET is a sensitive biomarker to detect the typical (axial) chronic low back pain (cLBP). The research team will validate [11C]Martinostat PET’s ability to differentiate subtypes of pain by comparing axial cLBP and other cLBP patients with radiculopathy and longitudinally study subacute LBP patients (sLBP) to investigate whether there is a unique imaging signature that differentiates patients who develop cLBP and those who recover from low back pain. Using [11C]Martinostat to understand HDAC expression changes in chronic pain patients will validate an epigenetic drug target, refine patient selection based on HDAC expression, and facilitate proof of mechanism in developing novel analgesics.

1UG3AR076387-01
Fibromyalgia TENS in Physical Therapy Study (TIPS): An embedded pragmatic clinical trial Clinical Research in Pain Management Pragmatic and Implementation Studies for the Management of Pain to Reduce Opioid Prescribing (PRISM) NIAMS UNIVERSITY OF IOWA SLUKA, KATHLEEN A (contact); CROFFORD, LESLIE J Iowa City, IA 2019
NOFO Title: HEAL Initiative: Pragmatic and Implementation Studies for the Management of Pain to Reduce Opioid Prescribing (PRISM)(UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-AT-19-004
Summary:

Fibromyalgia (FM) is a chronic pain condition characterized by widespread musculoskeletal pain, tenderness, and stiffness associated with fatigue and sleep disturbance. The investigators have recently completed a trial that demonstrated efficacy of active transcutaneous electrical nerve stimulation (TENS) compared with placebo TENS or no treatment in women with FM. While physical therapists are trained in using TENS, it is underused in clinical practice. This application proposes a pragmatic clinical trial of TENS for patients with FM to determine if the addition of TENS to physical therapy (PT) reduces pain, increases PT adherence, and helps achieve functional goals with less drug use. This study will address the critical need for strategies to implement effective nonpharmacologic treatments for FM. Successful completion of this trial will provide generalizable effectiveness data for referring providers, physical therapists, and insurers and will inform future pragmatic trials of nonpharmacologic treatments conducted in PT practices.

3U19AR076725-01S1
HEALing LB3P: Profiling Biomechanical, Biological and Behavioral phenotypes Clinical Research in Pain Management Back Pain Consortium Research Program NIAMS UNIVERSITY OF PITTSBURGH AT PITTSBURGH SOWA, GWENDOLYN A Pittsburgh, PA 2020
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for Administrative Supplements to Promote Training in Clinical Research on Pain (Admin Supp ? Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-044
Summary:

Multiple factors, including inflammation contribute to chronic low back pain. Inflammation is mediated by numerous genes. The study aims to determine how variations in the genes encoding key inflammatory mediators impact the response of patients with chronic low back pain to physical therapy treatment. Gene variations that are known to be linked to inflammation and pain will be tested against their possible association on physical therapy treatment outcomes, to inform clinical decisions on optimal care. This study will support training in clinical research on pain within the context of the HEAL BACPAC Mechanistic Research Center. It will provide resources for a research project relevant to the parent grant and the career development of an individual in the field of pain research. The ability to identify a set of genetic variations and classify patients according to treatment response might enable use of DNA testing as a screening tool for targeted treatments for patients with CLBP.

1R44AR074820-01A1
A phenotypic screen for osteoarthritic pain therapeutics using all-optical electrophysiology Cross-Cutting Research Small Business Programs NIAMS QUELL TX, INC. LIU, PIN; MCMANUS, OWEN B Cambridge, MA 2019
NOFO Title: PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed)
NOFO Number: PA-18-574
Summary:

 Quell Therapeutics uses the Optopatch platform for making all-optical electrophysiology measurements in neurons at a throughput sufficient for phenotypic screening. Using engineered optogenetic proteins, blue and red light can be used to stimulate and record neuronal activity, respectively. Custom microscopes enable electrophysiology recordings from 100’s of individual neurons in parallel with high sensitivity and temporal resolution, a capability currently not available with any other platform screening technology. Here, researchers combine the Optopatch platform with an in vitro model of chronic pain, where dorsal root ganglion (DRG) sensory neurons are bathed in a mixture of inflammatory mediators found in the joints of osteoarthritis patients. The neurons treated with the inflammatory mixture become hyperexcitable, mimicking the anticipated cellular pain response. Investigators calculate the functional phenotype of arthritis pain, which captures the difference in action potential shape and firing rate in response to diverse stimuli. The team will screen for small molecule compounds that reverse the pain phenotype while minimizing perturbation of neuronal behavior orthogonal to the pain phenotype, the in vitro “side effects.” The highest ranking compounds will be chemically optimized and their pharmacokinetic, drug metabolism, and in vivo efficacy will be characterized. The goal is to advance therapeutic discovery for pain, which may ultimately help relieve the US opioid crisis.

1U18EB030609-01
Novel Implantable Device to Negate Post-Amputation Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB NOVAFLUX, INC. LABIB, MOHAMED E (contact); KATHJU, SANDEEP Princeton, NJ 2021
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

Approximately 3.6 million Americans live with an amputated extremity, and the majority of these individuals are likely to suffer from chronic post-amputation pain. There is no consensus as to a recommended therapy for such pain, and many treatments do not provide sufficient pain control. Some studies have shown effective pain suppression from delivering an anesthetic agent directly to an injured nerve. This research aims to develop a device that can be implanted near the injured nerves of an amputated limb to deliver an anesthetic. Findings from this preclinical study will optimize design and delivery features to maximize its effect on pain control for as long as possible without needing a drug refill. The research is expected to advance eligibility for further testing in large animals and humans.

1U18EB029354-01
Treating pain in sickle cell disease by means of focused ultrasound neuromodulation Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB CARNEGIE-MELLON UNIVERSITY HE, BIN Pittsburgh, PA 2019
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

Researchers will develop a novel transcranial focused ultrasound (tFUS) device for pain treatment and establish its effectiveness for treating sickle cell disease (SCD) pain in humanized mice. The tFUS will target the specific cortical regions involved in SCD pain using a novel non-invasive electrophysiological source imaging technique. The project’s goals have several aims. Aim 1: Develop tFUS devices for pain treatment. The mouse-scale system will be designed to validate the therapeutic effect of stimulating the anticipated cortical targets. This will inform development of the simpler human-scale system, which will use models of the skull to select cost-effective transducers to reach the targets. Aim 2: Evaluate tFUS effectiveness and optimize stimulation parameters in an SCD mice model. Researchers will determine effective tFUS parameters to chronically reduce SCD pain in mice and validate this using behavioral measures. Aim 3: Use electrophysiological source imaging to target and trigger closed-loop tFUS in animal models. This aim also includes performing safety studies to prepare for human trials. The project will develop a transformative, noninvasive tFUS device to effectively and safely treat pain in SCD. 

1U18EB029251-01
The Injectrode - A Truly Injectable Electrode for Dorsal Root Ganglion Stimulation to Treat Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB UNIVERSITY OF WISCONSIN-MADISON LUDWIG, KIP A (contact); WEBER, DOUGLAS J Madison, WI 2019
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

While traditional epidural spinal cord stimulation (SCS) for intractable pain has been very efficacious for the patients responsive to it, the success rate has held at approximately 55%. Dorsal root ganglion (DRG) stimulation has shown promise in early trials to provide greater pain relief. Although the decrease in back pain at 3 months was significantly greater in the DRG arm vs. SCS, the adverse event rate related to the device or implant procedure was significantly higher in the DRG arm. Researchers will develop the “Injectrode” system to make the procedure simpler and safer by using an alternative to implantation: using an injectable pre-polymer liquid composite that cures quickly after injection adjacent to the DRG. They will compare an Injectrode-based system with traditional electrode stimulation at the DRG as an alternative to opioid administration. Researchers will perform benchtop characterization and refinement as a precursor to a clinical study, use modeling and animal testing to refine the efficiency of energy transfer from a transcutaneous electrical nerve stimulation unit to an Injectrode/Injectrode collector concept, and optimize the procedure for the complex anatomy of the human DRG.

1U18EB029353-01
Development of a Wireless Endovascular Nerve Stimulator for Treatment of Refractory Neuropathic Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB BAYLOR COLLEGE OF MEDICINE KAN, PETER TZE MAN; ROBINSON, JACOB T; SHETH, SUNIL Houston, TX 2019
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

For patients with neuropathic pain refractory to therapy using small molecules, modulation of specific neural structures in the central or peripheral nervous system can provide effective alternative treatments. While current Food and Drug Administration–approved devices for dorsal root ganglion (DRG) stimulation are safe and effective, there have been an unfortunate number of adverse events associated with pulse generator infections and lead migration. The research team will develop a wireless, millimeter-sized nerve stimulator that can be delivered through the vasculature and stimulate the DRG to alleviate symptoms of neuropathic pain and the associated minimally invasive delivery method. This endovascular nerve stimulation (EVNS) system depends on development and integration of key novel technologies into an endovascular stent. The magnetoelectric transducers and electronic circuits will convert wireless power and data into stimulus patterns that can trigger neural activity in the DRG via miniature electrodes. After chronic demonstration of safety and functionality in large animal models, the team will prepare for regulatory discussions with the FDA. If successful, the EVNS will provide a technology platform for treating other neuropathic pain syndromes. 

1U18EB029257-01
Temporal Patterns of Spinal Cord Stimulation Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB DUKE UNIVERSITY GRILL, WARREN M Durham, NC 2019
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

This project will design and test optimized temporal patterns of stimulation to improve the efficacy of commercially available spinal cord stimulation (SCS) systems to treat chronic neuropathic pain. Researchers will build upon a validated biophysical model of the effects of SCS on sensory signal processing in neurons within the dorsal horn of the spinal cord to better understand how to improve the electrical stimulus patterns applied to the spinal cord. They will use sensitivity analyses to determine the robustness of stimulation patterns to variations in electrode positioning, selectivity of stimulation, and biophysical properties of the dorsal horn neural network. Researchers will demonstrate improvements from these new stimulus patterns by 1) measuring their effects on pain-related behavioral outcomes in a rat model of chronic neuropathic pain and by 2) quantifying the effects of optimized temporal patterns on spinal cord neuron activity. The outcome will be mechanistically derived and validated stimulus patterns that are significantly more efficacious than the phenomenologically derived standard of care patterns; these patterns could be implemented with either a software update or minor hardware modifications to existing SCS products.

1U18EB029351-01
Development of an MRgFUS system for precision-targeted neuromodulation of pain circuits with simultaneous functional MRI Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB VANDERBILT UNIVERSITY MEDICAL CENTER CASKEY, CHARLES F (contact); CHEN, LI MIN ; GRISSOM, WILLIAM A Nashville, Tennessee 2019
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

This project aims to develop a next-generation noninvasive neuromodulation system for non-addictive pain treatments. The research team will build an integrated system that uses magnetic resonance image-guided focused ultrasound (MRgFUS) stimulation to target pain regions and circuits in the brain with high precision. The system will use MR imaging to locate three pain targets commonly used in clinical pain treatments, to stimulate those targets with ultrasound, and to monitor responses of nociceptive pain circuits using a functional MRI readout. Three collaborating laboratories will tackle the goals of this project: (Aim 1) Develop focused ultrasound technology for neuromodulation in humans, compatible with the high magnetic fields in an MRI scanner. (Aim 2) Develop MRI technology to find neuromodulation targets, compatible with focused ultrasound transducers. (Aim 3) Validate the complete MRgFUS neuromodulation system in brain pain regions in nonhuman primates. By the end of the project, the research team will have a fully developed and validated MRgFUS system that is ready for pilot clinical trials in pain management.