Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Year Awarded
1U19NS130608-01
Human Nociceptor and Spinal Cord Molecular Signature Center Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TEXAS DALLAS PRICE, THEODORE J (contact); CURATOLO, MICHELE; DOUGHERTY, PATRICK M Richardson, TX 2023
NOFO Title: Notice of Special Interest (NOSI): Encourage Eligible NIH HEAL Initiative Awardees to Apply for Administrative Supplements to Support Career Enhancement Related to Clinical Research on Pain
NOFO Number: NOT-NS-22-087
Summary:

This project supports a post-baccalaureate trainee develop skills needed to pursue a career in clinical pain research. The research will use molecular tools to study nerve, joint, muscle, and fascia tissues from individuals with chronic low back pain who had spine surgery. The research will include working with patients, designing clinical studies, and sharing results. 

1R21AT012304-01
Erythrocyte Autophagy Proteins as Potential Non-Opioid Novel Targets for Pain in Sickle Cell Disease Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NCCIH UNIVERSITY OF ILLINOIS, CHICAGO RAMASAMY, JAGADEESH Chicago, IL 2022
NOFO Title: Emergency Awards: HEAL Initiative-Early-Stage Discovery of New Pain and Opioid Use Disorder Targets Within the Understudied Druggable Proteome (R21 Clinical Trial Not Allowed)
NOFO Number: TR22-011
Summary:

Sickle cell disease is an inherited blood disorder affecting about 100,000 Americans and over 20 million people worldwide. It is caused by a mutation in the gene for beta-globin that results in the characteristic sickled shape of red blood cells, life-long severe pain, and shortened lifespan. Painful episodes that require hospitalization and, in many cases, opioid treatment, are a hallmark of sickle cell disease. The source of these painful episodes remains unclear, and it is also unknown why pain severity varies so much among affected individuals. This project will identify novel, non-opioid targets to reduce sickle cell-related pain and search for biomarkers to help clinicians predict which individuals are at risk for increased pain, thereby improving health outcomes for people with sickle cell disease.

1R21DA057500-01
G Alpha Z Subunit as a Potential Therapeutic Target to Modulate Mu Opioid Receptor Pharmacology Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDA UNIVERSITY OF ROCHESTER BIDLACK, JEAN M Rochester, NY 2022
NOFO Title: Emergency Awards: HEAL Initiative-Early-Stage Discovery of New Pain and Opioid Use Disorder Targets Within the Understudied Druggable Proteome (R21 Clinical Trial Not Allowed)
NOFO Number: TR22-011
Summary:

Opioids affect the body by attaching to certain types of receptors that attach to G-proteins (particularly, a subtype called G-alpha). Opioids vary in their ability to provide pain relief as well as in their ability to require more drug to provide a response, known as tolerance. This project will explore the potential of various G-alpha subunits to increase or decrease opioid receptor signaling. The research findings will lay the groundwork for tailoring G-alpha related opioid effects to provide more pain relief while being less addictive.

1R21NS130409-01
Novel Genetically Encoded Inhibitors to Probe Functional Logic of Cav-Beta Molecular Diversity Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS COLUMBIA UNIVERSITY HEALTH SCIENCES COLECRAFT, HENRY M New York, NY 2022
NOFO Title: Emergency Awards: HEAL Initiative-Early-Stage Discovery of New Pain and Opioid Use Disorder Targets Within the Understudied Druggable Proteome (R21 Clinical Trial Not Allowed)
NOFO Number: TR22-011
Summary:

High-voltage-gated calcium channels convert electrical signals into physiological responses. After a nerve injury, levels of these channels go down in some neurons in the dorsal root ganglia that communicates pain signals to and from the brain. This decline results in reduced flow of calcium that may underlie pain. This project will develop novel approaches to block these calcium channels p to further study their roles in controlling pain.

1R21TR004333-01
Discovery of Novel Openers of the Understudied Human Drug Target Kir6.1 Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NCATS NEW YORK UNIVERSITY SCHOOL OF MEDICINE CARDOZO, TIMOTHY J New York, NY 2022
NOFO Title: Emergency Awards: HEAL Initiative-Early-Stage Discovery of New Pain and Opioid Use Disorder Targets Within the Understudied Druggable Proteome (R21 Clinical Trial Not Allowed)
NOFO Number: TR22-011
Summary:

Routine treatment of pain with prescription opioid medications may evolve into opioid use disorder, addiction, and potentially overdose. New, non-opioid molecular targets for pain are needed as a key element of responding to the opioid and overdose crisis. Ion channels are molecular gateways that convert electrical signals into physiological responses, and many have been implicated in transmitting pain signals. The ion channel Kir6.1/KCNJ8 has been linked to the control of postoperative and cancer pain. Studies in animal models show that low levels of this ion channel are evident after an injury. This research will identify compounds that can open the Kir6.1/KCNJ8 channel as potential treatment strategy for pain.

1R21NS130417-01
The Role of Lysosomal Mechano-Sensitive Ion Channel in Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS INDIANA UNIVERSITY PURDUE AT INDIANAPOLIS TAN, ZHIYONG Indianapolis, IN 2022
NOFO Title: Emergency Awards: HEAL Initiative-Early-Stage Discovery of New Pain and Opioid Use Disorder Targets Within the Understudied Druggable Proteome (R21 Clinical Trial Not Allowed)
NOFO Number: TR22-011
Summary:

Chronic pain severely reduces the quality of life and ability to work for millions of Americans. Because misuse of opioids for chronic pain treatment contributes to opioid addiction and opioid overdose, there is an urgent need to study novel non-opioid mechanisms, targets, and treatment strategies for chronic pain. Many ion channels control the flow of electrical signals in peripheral sensory neurons and are thus key targets for understanding and treating chronic pain. This project will conduct detailed studies to identify major ion channel-related molecular activities, targets, and treatment strategies for chronic pain. In particular, this research will explore the role of a specific ion channel (lysosomal mechanosensitive ion channel, orTmem63A) in neuropathic pain resulting from nerve injury.

1U19NS130607-01
INTERCEPT: Integrated Research Center for Human Pain Tissues Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS WASHINGTON UNIVERSITY GEREAU, ROBERT W Saint Louis, MO 2022
NOFO Title: HEAL Initiative: Discovery and Functional Evaluation of Human Pain-associated Genes and Cells (U19 Clinical Trial Not Allowed)
NOFO Number: NS22-018
Summary:

This project will use a variety of state-of-the-art technologies to generate a comprehensive  gene expression map of human peripheral nerves. The research will enhance understanding about genes involved in various painful conditions associated with nerve damage (neuropathies) resulting from injury or disease. This research will analyze DNA sequences of individual neuronal and non-neuronal cells in human nerve cells (from individuals with and without pain located outside the spinal cord that are involved in pain signal transmission. The findings, together with other imaging and computational approaches, will be used to generate a spatial atlas of the human dorsal root ganglia – a key hub for pain communication between the brain and spinal cord.

1UC2AR082195-01
Comprehensive Functional Phenotyping of Trigeminal Neurons Innervating Temporomandibular Joint (TMJ) Tissues in Male, Female and Aged Mice, Primates, and Humans With and Without TMJ Disorders (TMJD) Preclinical and Translational Research in Pain Management Restoring Joint Health and Function to Reduce Pain (RE-JOIN) NIAMS UNIVERSITY OF TEXAS HLTH SCIENCE CENTER AKOPIAN, ARMEN N; BOADA, MARIO DANILO; ERNBERG, MALIN; MACPHERSON, LINDSEY J San Antonio, TX 2022
NOFO Title: HEAL Initiative: Restoring Joint Health and Function to Reduce Pain Consortium (RE-JOIN) (UC2 Clinical Trial Not Allowed)
NOFO Number: RFA-AR-22-009
Summary:

Scientists do not know the details of how the nervous system interacts with the temporomandibular joint (TMJ) that connects the lower jaw with the skull. This project aims to comprehensively explain the functions, types, neuroanatomical distributions, and adaptability (plasticity) of specific nerve cells in the brain (trigeminal neurons) that connect with the TMJ. The research will analyze nerve-TMJ connections associated with chewing muscles and other structures that form the TMJ such as cartilage and ligaments. The project will analyze samples from both sexes of aged mice, primates, and humans with and without painful TMJ disorders. This research aims to uncover potential treatment and prevention targets for managing TMJ pain.

1RF1NS130481-01
Immune Modulating Therapies to Treat Complex Regional Pain Syndrome Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS DREXEL UNIVERSITY AJIT, SEENA Philadelphia, PA 2022
NOFO Title: HEAL Initiative: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: NS22-034
Summary:

Complex regional pain syndrome is a difficult-to-treat chronic condition that causes excess and prolonged pain and inflammation after injury to an arm or leg and includes damage to skin of affected limbs. Although it is known that aberrant immune system function plays a role in this condition, the details remain unclear about how this occurs – in particular, through the adaptive immune system that relies on specialized immune cells and antibodies to protect the body from harm.  This project will study the role of certain immune cells (T cells) that circulate throughout the body or reside in bone using both rat or human bone samples from patients with complex regional pain syndrome.

1UC2AR082200-01
Neuronal Anatomy, Connectivity, and Phenotypic Innervation of the Knee Joint Preclinical and Translational Research in Pain Management Restoring Joint Health and Function to Reduce Pain (RE-JOIN) NIAMS BAYLOR COLLEGE OF MEDICINE LEE, BRENDAN (contact); ARENKIEL, BENJAMIN R; RAY, RUSSELL S; WYTHE, JOSHUA D Houston, TX 2022
NOFO Title: HEAL Initiative: Restoring Joint Health and Function to Reduce Pain Consortium (RE-JOIN) (UC2 Clinical Trial Not Allowed)
NOFO Number: RFA-AR-22-009
Summary:

Pain caused by degenerative joint diseases such as osteoarthritis (OA) is a major public health challenge that significantly affects quality of life for millions of Americans. There are no therapies available that offer pain relief and reverse the course of OA.  This project will use state-of-the-art technologies to create a neuronal connectivity and molecular map of the mouse knee joint, which will help identify molecular signatures that can be targeted for therapy. The research will include animals of different ages and of both sexes and test joint effects after exercise, in animals with OA, and after gene therapy that delivers an experimental OA medication directly to the joint.

1R01HD110922-01
CMG2 as a Target for Safe and Effective Treatment of Endometriosis-Associated Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NICHD BOSTON CHILDREN'S HOSPITAL ROGERS, MICHAEL SEAN Boston, MA 2022
NOFO Title: HEAL Initiative: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: NS22-034
Summary:

Endometriosis is an often-painful disorder in which uterine tissue grows outside the uterus. Treatment of endometriosis-associated pain involves use of opioids in many women. This project aims to study a culprit gene thought to be involved with the disorder (capillary morphogenesis gene or CMG2) as a target for new, nonopioid pain medications. The research will also clarify how CMG2 s affects endometriosis-associated pain to test the effects of new medications for endometriosis pain.

1UG3NS127251-01A1
Development of Pathology-Activated Drugs for Treatment of Neuropathic Pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS UNIVERSITY OF TX MD ANDERSON CAN CTR GRACE, PETER M (contact); ABELL, ANDREW Houston, TX 2022
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
Summary:

The medication monomethyl fumarate, approved for treating multiple sclerosis, has pain-relieving properties, but it also has side effects that affect the digestive tract and decrease levels of white blood cells, a problem known as leukopenia. This project will limit the availability of monomethyl fumarate to areas in the central nervous system associated with pain. Targeting the delivery of this drug to pain-related regions may improve its safety profile for treating neuropathic pain.

1U19NS130608-01
Human Nociceptor and Spinal Cord Molecular Signature Center Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TEXAS DALLAS PRICE, THEODORE J (contact); CURATOLO, MICHELE ; DOUGHERTY, PATRICK M Richardson, TX 2022
NOFO Title: HEAL Initiative: Discovery and Functional Evaluation of Human Pain-associated Genes and Cells (U19 Clinical Trial Not Allowed)
NOFO Number: NS22-018
Summary:

This project will identify molecular characteristics of human sensory neurons and non-neuronal cells from the human dorsal root ganglia. This structure located outside the spinal cord is integrally involved in communicating pain signals to and from the brain. The research will use molecular approaches to characterize tissues obtained from organ donors and in patients who experience chronic pain. The findings will also help generate a connectivity map, or “connectome,” of nerve cell connections between the dorsal root ganglia of the spinal cord and the brain.

1UC2AR082196-01
Innervation of the Knee and TMJ  Preclinical and Translational Research in Pain Management Restoring Joint Health and Function to Reduce Pain (RE-JOIN) NIAMS UNIVERSITY OF FLORIDA ALLEN, KYLE D (contact); ALMARZA, ALEJANDRO JOSE; CAUDLE, ROBERT M Gainesville, FL 2022
NOFO Title: HEAL Initiative: Restoring Joint Health and Function to Reduce Pain Consortium (RE-JOIN) (UC2 Clinical Trial Not Allowed)
NOFO Number: RFA-AR-22-009
Summary:

A complex network of different nerve cell subtypes connects to joints in different ways throughout body regions, such as the knee and the temporomandibular joint (TMJ) that connects the lower jaw and skull. This project aims to identify disease-specific pain symptoms using clinically relevant rat models of TMJ and knee osteoarthritis – and compare findings with disease-specific pain symptoms in human patients with the same conditions. This research may lead to a better understanding of how different nerve cell subtypes contribute to joint pain as well as how these nerve cell subtypes change with age and disease.

1R01DE032501-01
Targeting HB-EGF and Trigeminal EGFR for Oral Cancer Pain and Opioid Tolerance Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDCR NEW YORK UNIVERSITY YE, YI New York, NY 2022
NOFO Title: HEAL Initiative: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: NS22-034
Summary:

Oral cancers are painful and often require use of opioid medications to manage pain. However, the effectiveness of opioids often wanes quickly, and many patients require higher doses because they develop tolerance to these medications. This project will study the potential value of blocking epidermal growth-factor receptors interacting with peripheral nerves to treat oral cancer pain. The findings will advance understanding of the molecular mechanisms underlying oral cancer pain and provide a rationale for repurposing epidermal growth-factor receptor blockers, which is already approved for head and neck cancer treatment for treating oral cancer and associated pain.

1UC2AR082186-01
Mapping the Joint-Nerve Interactome of the Knee Preclinical and Translational Research in Pain Management Restoring Joint Health and Function to Reduce Pain (RE-JOIN) NIAMS RUSH UNIVERSITY MEDICAL CENTER MALFAIT, ANNE-MARIE; LOTZ, MARTIN K; MILLER, RICHARD J Chicago, IL 2022
NOFO Title: HEAL Initiative: Restoring Joint Health and Function to Reduce Pain Consortium (RE-JOIN) (UC2 Clinical Trial Not Allowed)
NOFO Number: RFA-AR-22-009
Summary:

This project will use a variety of technologies to create a comprehensive, 3D map of how sensory neurons activate knee joints in both mice and humans. The research will use imaging techniques and molecular approaches that measure gene expression. The findings will help create a comprehensive gene expression profile map of individual cells in the nerve fibers leading to the knee, as well as describe how nerve cells and joint cells interact at the most fundamental level. This research will generate a rich anatomical and molecular resource to understand the molecular basis of joint pain and guide the development of novel pain-relieving strategies.

1R01DK135076-01
PNPase Inhibition as an Effective Treatment for Chronic Bladder Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDDK UNIVERSITY OF PITTSBURGH AT PITTSBURGH BIRDER, LORI A (contact); JACKSON, EDWIN KERRY Pittsburgh, PA 2022
NOFO Title: HEAL Initiative: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: NS22-034
Summary:

Chronic visceral pain disorders, such as interstitial cystitis/bladder pain syndrome, are among the most difficult types of pain to treat. This project will conduct a detailed analysis of an enzyme thought to be involved with the disorder (purine nucleoside phosphorylase, or PNPase) as a target for new nonopioid pain medications to treat interstitial cystitis/bladder pain syndrome. The research will lay the groundwork for developing targeted treatments for visceral pain disorders.

1UG3NS127258-01A1
A First-in-Class, Mechanism-Guided, Cell-Based Therapy for Complex Regional Pain Syndrome Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS CLEVELAND CLINIC LERNER COM-CWRU CHENG, JIANGUO Cleveland, OH 2022
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
Summary:

Complex regional pain syndrome is one of the most disabling and difficult-to-treat chronic pain conditions. This project seeks to develop a novel, biological treatment for the condition using injected human bone marrow cells. that can form and repair skeletal tissues and control nervous and immune system activity. The research will determine the dose and source of clinical-grade bone marrow cells needed, toward the goal of submitting an Investigational New Drug Application to the U.S. Food and Drug Administration that will enable further clinical study.

1U19NS130617-01
Harvard PRECISION Human Pain Center Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS BRIGHAM AND WOMEN'S HOSPITAL RENTHAL, WILLIAM RUSSELL (contact); WOOLF, CLIFFORD J Boston, MA 2022
NOFO Title: HEAL Initiative: Discovery and Functional Evaluation of Human Pain-associated Genes and Cells (U19 Clinical Trial Not Allowed)
NOFO Number: NS22-018
Summary:

This project will use state-of-the-art technologies to analyze individual cells to characterize how human pain receptors communicate pain between the human dorsal root ganglia and the brain – including how the signals vary across diverse populations. This research will generate useful, high-quality human data about pain for further analysis and re-use by other scientific teams, toward identifying and prioritizing novel therapeutic targets for pain.

1UC2AR082197-01
Neural Architecture of the Murine and Human Temporomandibular Joint Preclinical and Translational Research in Pain Management Restoring Joint Health and Function to Reduce Pain (RE-JOIN) NIAMS DUKE UNIVERSITY DONNELLY, CHRISTOPHER RYAN; CAI, DAWEN; EMRICK, JOSHUA JAMES Durham, NC 2022
NOFO Title: HEAL Initiative: Restoring Joint Health and Function to Reduce Pain Consortium (RE-JOIN) (UC2 Clinical Trial Not Allowed)
NOFO Number: RFA-AR-22-009
Summary:

Temporomandibular joint (TMJ) disorders are the most common form of chronic pain in the face and mouth area (orofacial pain), but relatively little is known about the biological causes of these conditions. This project will define the properties of sensory neurons that connect to tissues that make up the TMJ which connects the lower jaw and skull. This research aims to lay groundwork for development of new therapeutic approaches to treat these painful conditions.

1R01DK134989-01
Signal Integration by Specialized Mesenchyme in Urothelial Homeostasis and Interstitial Cystitis/Bladder Pain Syndrome Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDDK STANFORD UNIVERSITY BEACHY, PHILIP A Redwood City, CA 2022
NOFO Title: HEAL Initiative: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: NS22-034
Summary:

Interstitial cystitis/bladder pain syndrome is a debilitating disease affecting many women. Opioid-based pain management is a common feature of current treatment approaches but is associated with the risk of addiction. The causes of this disorder remain unknown, and no effective treatments are available. This project will provide new insights using genetic, medication-based and other approaches in a mouse model, along with single-cell gene expression studies conducted with cells from mice and human patients who have this condition. The analyses will help provide targeted, safe, and effective treatment approaches for individuals with interstitial cystitis/bladder pain syndrome.

3UH3NS116218-02S1
Novel mGlu5 Negative Allosteric Modulators as First-in-Class Non-Addictive Analgesic Therapeutic Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS Vanderbilt University ROOK, JERRI MICHELLE Nashville, TN 2022
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements. Parent Grant: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: Supplement: PA-20-272; Parent NOFO: NS-21-010
Summary:

Negative allosteric modulators (NAMs) of the metabotropic glutamate (mGlu) receptor, mGlu5, have shown promise for treatment of multiple pain conditions without the serious adverse effects and safety concerns associated with opioids. This project will develop and test a novel series of highly selective mGlu5 NAMs that are structurally unrelated to earlier failed compounds and do not form toxic byproducts as with previous mGlu5 NAMs. A lead candidate is now being characterized in several studies to assess readiness for testing in Phase I clinical studies.

1RM1NS128775-01
Defining Mechanisms of Pain Relief Associated with Dorsal Root Ganglion and Spinal Cord Stimulation Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS University of Pittsburgh KOERBER, H RICHARD (contact); LEMPKA, SCOTT F; WEBER, DOUGLAS J Pittsburgh, PA 2022
NOFO Title: HEAL Initiative: Interdisciplinary Teams to Elucidate the Mechanisms of Device-Based Pain Relief (RM1 Clinical Trial Optional)
NOFO Number: NS22-016
Summary:

Chronic pain is a debilitating condition for which there is a pressing need for safe, effective treatments. Neurostimulation therapies that target nerve structures such as the dorsal root ganglion (DRG) and the spinal cord, have shown promising results for treating chronic pain, but researchers don’t know how they work. This project focuses on two prevailing models used to explain the therapeutic effects of neurostimulation: the gate-control model in which pain signals are blocked from reaching the brain and the T-junction filtering model in which pain signals are blocked from reaching the spinal cord. Strategies will include innovative behavioral, electrophysiological, imaging, and computational modeling techniques. The results of these studies will help explain why neurostimulation therapies work and potentially offer new treatment strategies for improved pain relief.

1UG3NS128439-01
Allosteric Targeting of Cannabinoid CB1 Receptor to Develop Non-Addictive Small Molecule Analgesics Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS Texas A&M Health Science Center LU, DAI (contact); SELLEY, DANA E; TAO, FENG College Station, TX 2022
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
Summary:

Overreliance on opioids to treat chronic pain has been a contributor to the increase in individuals experiencing opioid addiction. This project aims to develop an innovative treatment approach for chronic pain that targets the cannabinoid receptor 1 (CB1R) to block the sensation of pain. The approach seeks to identify molecules that interact with a different part of the CBR1 receptor than do endocannabinoids and the primary active component of cannabis, tetrahydrocannabinol. Molecules that bind to and activate CBR1 in this different way (at an “allosteric” site) may produce nerve signaling that might differ from the effects of cannabis and endocannabinoids. This redirection of signaling pathways could help eliminate the risk of adverse effects observed with natural cannabinoids and other CBR1-binding molecules. The goal of this project is to identify a CB1R allosteric molecule, conduct studies toward obtaining federal permission to develop it as a medication, and to test it in a Phase I clinical study.

1RM1NS128741-01
From Nerve to Brain: Toward a Mechanistic Understanding of Spinal Cord Stimulation in Human Subjects Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS Massachusetts General Hospital WAINGER, BRIAN JASON (contact); FREEMAN, ROY ; LOGGIA, MARCO LUCIANO Boston, MA 2022
NOFO Title: HEAL Initiative: Interdisciplinary Teams to Elucidate the Mechanisms of Device-Based Pain Relief (RM1 Clinical Trial Optional)
NOFO Number: NS22-016
Summary:

Spinal cord stimulators (SCS) and related devices are commonly used for hard-to-treat pain conditions, but how they work remains unclear. This knowledge is important for improving device design and stimulation patterns, as well as for determining which patients will benefit. Through a series of clinical studies in patients with SCS devices, this project will explore the hypothesis that SCS devices reduce pain by changing the excitability of peripheral sensory nerve fibers in the spinal cord. The results should guide development of biomarkers to advance research further.