Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Year Awarded
1RM1NS128775-01
Defining Mechanisms of Pain Relief Associated with Dorsal Root Ganglion and Spinal Cord Stimulation Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS University of Pittsburgh KOERBER, H RICHARD (contact); LEMPKA, SCOTT F; WEBER, DOUGLAS J Pittsburgh, PA 2022
NOFO Title: HEAL Initiative: Interdisciplinary Teams to Elucidate the Mechanisms of Device-Based Pain Relief (RM1 Clinical Trial Optional)
NOFO Number: NS22-016
Summary:

Chronic pain is a debilitating condition for which there is a pressing need for safe, effective treatments. Neurostimulation therapies that target nerve structures such as the dorsal root ganglion (DRG) and the spinal cord, have shown promising results for treating chronic pain, but researchers don’t know how they work. This project focuses on two prevailing models used to explain the therapeutic effects of neurostimulation: the gate-control model in which pain signals are blocked from reaching the brain and the T-junction filtering model in which pain signals are blocked from reaching the spinal cord. Strategies will include innovative behavioral, electrophysiological, imaging, and computational modeling techniques. The results of these studies will help explain why neurostimulation therapies work and potentially offer new treatment strategies for improved pain relief.

1UG3NS128439-01
Allosteric Targeting of Cannabinoid CB1 Receptor to Develop Non-Addictive Small Molecule Analgesics Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS Texas A&M Health Science Center LU, DAI (contact); SELLEY, DANA E; TAO, FENG College Station, TX 2022
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
Summary:

Overreliance on opioids to treat chronic pain has been a contributor to the increase in individuals experiencing opioid addiction. This project aims to develop an innovative treatment approach for chronic pain that targets the cannabinoid receptor 1 (CB1R) to block the sensation of pain. The approach seeks to identify molecules that interact with a different part of the CBR1 receptor than do endocannabinoids and the primary active component of cannabis, tetrahydrocannabinol. Molecules that bind to and activate CBR1 in this different way (at an “allosteric” site) may produce nerve signaling that might differ from the effects of cannabis and endocannabinoids. This redirection of signaling pathways could help eliminate the risk of adverse effects observed with natural cannabinoids and other CBR1-binding molecules. The goal of this project is to identify a CB1R allosteric molecule, conduct studies toward obtaining federal permission to develop it as a medication, and to test it in a Phase I clinical study.

1RM1NS128741-01
From Nerve to Brain: Toward a Mechanistic Understanding of Spinal Cord Stimulation in Human Subjects Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS Massachusetts General Hospital WAINGER, BRIAN JASON (contact); FREEMAN, ROY ; LOGGIA, MARCO LUCIANO Boston, MA 2022
NOFO Title: HEAL Initiative: Interdisciplinary Teams to Elucidate the Mechanisms of Device-Based Pain Relief (RM1 Clinical Trial Optional)
NOFO Number: NS22-016
Summary:

Spinal cord stimulators (SCS) and related devices are commonly used for hard-to-treat pain conditions, but how they work remains unclear. This knowledge is important for improving device design and stimulation patterns, as well as for determining which patients will benefit. Through a series of clinical studies in patients with SCS devices, this project will explore the hypothesis that SCS devices reduce pain by changing the excitability of peripheral sensory nerve fibers in the spinal cord. The results should guide development of biomarkers to advance research further.

1R61NS127287-01
Initial Development of AEG-1 Inactivation as a Possible Strategy for Pain Treatment Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS Virginia Commonwealth University DAMAJ, M IMAD (contact); SARKAR, DEVANAND Richmond, Virginia 2022
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development [Small Molecules and Biologics] (R61 Clinical Trial Not Allowed)
NOFO Number: NS21-029
Summary:

There is a continued need to discover and validate new targets for potential therapeutic strategies for effective and safe treatment of pain. This project focuses on the protein metadherin, also known as astrocyte elevated gene-1 protein (AEG-1), as a possible new target for pain treatment. Preliminary studies have shown that mice genetically engineered to lack metadherin had significantly lower inflammation and chronic pain-related behaviors. This project aims to further validate AEG-1 as a pain target and test whether reducing levels in white blood cells called macrophages might work as a therapeutic strategy to reduce chronic inflammatory and/or neuropathic pain using an innovative nanoparticle approach to target specific cells.

1R61NS126026-01A1
Antagonists of CRMP2 Phosphorylation for Chemotherapy-Induced Peripheral Neuropathy Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS UNIVERSITY OF ARIZONA KHANNA, RAJESH Tucson, Arizona 2022
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development [Small Molecules and Biologics] (R61 Clinical Trial Not Allowed)
NOFO Number: NS21-029
Summary:

A more thorough understanding of neuropathic pain is critical for developing new target-specific medications. Researchers know that peripheral nerve injury changes various cell processes that affect two ion channels linked with chronic pain. Preliminary studies indicate that molecular changes known as phosphorylation to the collapsin response mediator protein 2 (CRMP2), one of five intracellular phosphoproteins, promotes abnormal excitability in the brain region that contributes to neuropathic pain. This project aims to develop small molecule inhibitors of CRMP2 phosphorylation as potential therapeutics for pain.

1R61NS127286-01
Developing GPR37 Activators as Non-Opioid Pain Therapeutics Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS University of Texas Med BR LA, JUN-HO (contact); ALLEN, JOHN A; ZHOU, JIA Galveston, TX 2022
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development [Small Molecules and Biologics] (R61 Clinical Trial Not Allowed)
NOFO Number: NS21-029
Summary:

Chronic pain from tissue injury often stems from long-term changes in spinal cord circuits that change nerve sensation. Reversing these changes may provide better pain therapeutics. Previous work in animal models showed that activating G protein-coupled receptor 37 (GPR37) dampens nerve signal intensity after long-term stimulation and alleviates pain behavioral responses. This project aims to validate GPR37 in the spinal cord as a useful target for new treatments for neuropathic pain. The work will facilitate screening and identification of new molecules that activate GPR37, which can then be tested for efficacy and safety in further research in animal models of pain.

1R61NS127285-01
Development of Therapeutic Antibodies to Target Sodium Channels Involved in Pain Signaling Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS University of California, Davis YAROV-YAROVOY, VLADIMIR M (contact); TRIMMER, JAMES S Davis, CA 2022
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development [Small Molecules and Biologics] (R61 Clinical Trial Not Allowed)
NOFO Number: NS21-029
Summary:

Voltage-gated sodium channels such as Nav1.7, Nav1.8, and Nav1.9 transmit pain signals in nerve fibers and are molecular targets for pain therapy. While Nav channels have been validated as pharmacological targets for the treatment of pain, available therapies are limited due to incomplete efficacy and significant side effects. Taking advantage of recent advances in structural biology and computational-based protein design, this project aims to develop antibodies to attach to Nav channels and freeze them in an inactive state. These antibodies can then be further developed as novel treatments for chronic pain.

1U18EB030609-01
Novel Implantable Device to Negate Post-Amputation Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NIBIB NOVAFLUX, INC. LABIB, MOHAMED E (contact); KATHJU, SANDEEP Princeton, NJ 2021
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

Approximately 3.6 million Americans live with an amputated extremity, and the majority of these individuals are likely to suffer from chronic post-amputation pain. There is no consensus as to a recommended therapy for such pain, and many treatments do not provide sufficient pain control. Some studies have shown effective pain suppression from delivering an anesthetic agent directly to an injured nerve. This research aims to develop a device that can be implanted near the injured nerves of an amputated limb to deliver an anesthetic. Findings from this preclinical study will optimize design and delivery features to maximize its effect on pain control for as long as possible without needing a drug refill. The research is expected to advance eligibility for further testing in large animals and humans.

1R34NS126030-01
Profiling the human gut microbiome for potential analgesic bacterial therapies Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS HOLOBIOME, INC. STRANDWITZ, PHILIP PETER (contact); GILBERT, JACK ANTHONY Cambridge, MA 2021
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development Initial Translational Efforts [Small Molecules and Biologics] (R34 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-21-016
Summary:

Disruptions in make-up of the microbiome are associated with disorders characterized by chronic pain and inflammation, such as rheumatoid arthritis and fibromyalgia. The gut microbiome has immune and metabolic effects, and human gut-derived bacteria may be a source of novel, safe, and non-addictive pain treatments. However, connections between gut and pain signals, known as the “gut–pain axis,” are still poorly understood. This study aims to identify human-gut-native bacteria that i) interact with known pain targets in lab studies, ii) test their activity and analgesic/anti-inflammatory potential in an animal model, and iii) develop a computational approach to predict microbial-genetic effects on pain signals.

1UG3NS123965-01
Novel, non-opioid, non-addictive intrathecal therapy for the treatment of chronic pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS CENTREXION THERAPEUTICS CORPORATION CAMPBELL, JAMES N Boston, MA 2021
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
Summary:

Patients with severe, intractable chronic pain primarily receive treatment with opioids, and non-opioid treatment options are urgently needed. These patients may be candidates for treatment using other types of pain medications administered via intrathecal injection—that is, injection directly into the fluid-filled space between the membranes surrounding the brain and spinal cord. Intrathecal injection requires much lower medication doses than systemic administration. Centrexion Therapeutics Corporation seeks to develop CNTX-3100, a highly selective and highly potent novel small molecule that activates the nociception receptor (NOPr), for intrathecal administration using a pump approved by the U.S. Food and Drug Administration. In animal studies, such NOPr agonists had powerful analgesic effects when delivered directly to the spinal cord by intrathecal administration. CNTX-3100 has ideal properties for intrathecal delivery and in animal studies provided pain relief and a safety profile that was superior to intrathecally administered morphine. This project will scale up the drug, develop a formulation that ensures a stable product for intrathecal delivery, and conduct preclinical toxicity studies to prepare for a Phase 1 clinical trial.

3R01DE029951-01S1
Targeting Endosomal Receptors for Treatment of Chronic Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDCR NEW YORK UNIVERSITY BUNNETT, NIGEL W New York, NY 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

G protein-coupled receptors (GPCRs) are the largest family of transmembrane signaling proteins and play important roles in inflammation and pain. GPCR signaling is fast and temporary, making it hard to measure in clinical studies of potential drugs to interfere with the signaling. This research is using selectively designed nanoparticles to stimulate or block GPCRs toward identifying new treatments for oral cancer pain. This award will use a new nanoformulation approach to understand how nanoparticles affect nerve function by i) testing the effects of continuous release of a GPCR inhibitor in an oral cancer microenvironment and ii) investigating the influence of various physicochemical characteristics of nanoparticles on nerve function in an oral cancer microenvironment.

1R34NS126032-01
Stem cell-loaded microgels to treat discogenic low back pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS CEDARS-SINAI MEDICAL CENTER SHEYN, DMITRIY Los Angeles, CA 2021
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development Initial Translational Efforts [Small Molecules and Biologics] (R34 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-21-016
Summary:

Pain caused by the degeneration of discs between vertebrae in the spine makes up a significant proportion of all chronic low back pain conditions. Although opioids are prescribed as treatments for this chronic condition, they often do not provide effective pain management, and currently there are no treatments that target the underlying disc disease. Notochordal cells mature into the cells that make up discs between vertebrae. Preliminary studies have shown that notochordal cells can be made from induced pluripotent stem cells, offering a potential replacement for diseased cells between discs. This study aims to develop a novel treatment for painful disc degeneration using a microgel/microtissue embedded with human notochordal cells made in the lab from induced pluripotent stem cells.

1UG3NS123964-01
Disease Modifying Analgesia with CA8 Gene Therapy Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS UNIVERSITY OF MIAMI SCHOOL OF MEDICINE LEVITT, ROY C Coral Gables, FL 2021
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
Summary:

Efforts to identify non-opioid analgesics for treatment of chronic pain have identified a protein, carbonic anhydrase-8 (CA8), in pain-sensing nerve cells in the spinal cord (dorsal root ganglion cells) whose expression regulates analgesic responses. Gene therapy delivering CA8 to dorsal root ganglion cells through clinically relevant routes of administration functions as a “local anesthetic” that induces long-lasting pain relief in animal models of chronic pain. This project will further develop CA8 gene therapy with the goal of treating chronic knee osteoarthritis pain. It will assess several gene therapy constructs to determine the doses needed, safety, efficacy, and specificity to nerve cells for each construct. It will then select the safest and most effective construct that can be administered via the least invasive route for further development. The project will include all steps necessary to identify one candidate gene therapy construct that will be suitable to begin clinical trials in patients with chronic knee osteoarthritis pain.

1U19NS126038-01
Site-directed RNA editing of Nav1.7 as a novel analgesic Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS MARINE BIOLOGICAL LABORATORY, WOODS HOLE ROSENTHAL, JOSHUA J C (contact); DIB-HAJJ, SULAYMAN D; DUSSOR, GREGORY O; EISENBERG, ELI New Haven, CT 2021
NOFO Title: HEAL Initiative: Team Research for Initial Translational Efforts in Non-addictive Analgesic Therapeutics Development (U19 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-21-015
Summary:

Opioids are widely used pain treatments, despite their relative ineffectiveness for chronic pain and their high potential for misuse and addiction. There is thus an urgent need for alternative, non-addictive pain treatments. Genetic and functional studies of human pain disorders and animal models of pain have validated Nav1.7, a voltage-gated sodium channel as an attractive target for new pain treatments. Currently available blockers of these channels can sometimes provide symptomatic relief for patients but have worrisome side effects affecting the brain and heart. This study aims to develop and validate an innovative site-directed RNA editing strategy that will offer the ability to create new versions of molecules to block Nav1.7, toward establishing a novel, non-addictive approach to treat chronic pain.

1R34NS126036-01
Synthesis of peripherally active CB1 agonists as analgesics Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS ST. LOUIS COLLEGE OF PHARMACY MAJUMDAR, SUSRUTA (contact); DROR, RON ; GEREAU, ROBERT W St. Louis, MO 2021
NOFO Title: HEAL Initiative: Planning Studies for Initial Analgesic Development Initial Translational Efforts [Small Molecules and Biologics] (R34 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-21-016
Summary:

Current medications for chronic pain are largely ineffective and rely heavily on opioids, one contributor to the nation’s opioid crisis. The endocannabinoid system that consists of cannabinoid receptors (CB1R and CB2R) and their endogenous ligands is a natural pathway in the human body and has emerged as an alternative target for developing new pain medications with few side effects. Current molecules that bind to CB1R in the brain and spinal cord have psychoactive side effects, limiting their therapeutic use for treating chronic pain. This study aims to develop new molecules to bind to CB1R tightly and selectively, are metabolically stable, and are also unable to enter the brain.

3U44NS115111-03S1
High-Resolution, Spinal Cord Stimulation for Non-Opioid Treatment of Neuropathic Pain Preclinical and Translational Research in Pain Management NINDS MICRO-LEADS, INC. MCLAUGHLIN, BRYAN L Somerville, MA 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

This research seeks to develop a high-resolution spinal cord stimulation therapy for treating chronic neuropathic pain of the lower extremities, groin, and lower back. Systems that use wireless communication methods require robust strategies to prevent various forms of cyberattacks on implantable devices. The focus of this project's research will be to develop a new cybersecurity risk-reduced architecture for Bluetooth low-energy implant communication.

1UG3NS123958-01
Development of a CCKBR-targeting scFv as Therapy for Chronic Pain Patients Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS UNIVERSITY OF NEW MEXICO HEALTH SCIS CTR WESTLUND-HIGH, KARIN N (contact); ALLES, SASCHA R Albuquerque, NM 2021
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
Summary:

Cholecystokinin B receptor (CCKBR) is a molecule found in the brain that helps regulate anxiety and depression but also influences the development of tolerance to opioids. CCKBR levels are also increased in models of nerve injury-induced (neuropathic) pain. Therefore, targeting CCKBR may offer a new approach to treating neuropathic pain and the associated anxiety and depression. Researchers have developed mouse antibodies that can inactivate CCKBR. However, to be usable in humans without causing an immune response, these antibodies need to be modified to include more human sequences. This project will use a fragment of the CCKBR antibody, modify it with the addition of human antibody sequences, and then select the clones that bind most strongly and specifically to human CCKBR. These will then be tested in cell and animal models of neuropathic pain to identify the most promising candidates for further evaluation in humans.

1R61NS113258-01A1
Multi-Omic Biomarkers for Neuropathic Pain Secondary to Chemotherapy Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS CLEVELAND CLINIC LERNER COM-CWRU ROTROFF, DANIEL; FOSS, JOSEPH F; JOHNSON, KENWARD B; Cleveland, OH 2020
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

Taxanes are among the most effective chemotherapeutic agents and are frequently used in the treatment of early stage and metastatic breast cancer. However, they are known to produce a pain condition known as Chemotherapy-Induced Peripheral Neuropathic Pain (CIPNP). CIPNP is one of the primary reasons a patient receives a limited dose of taxane. No diagnostic tool exists to identify patients that will develop CIPNP in response to taxane therapy. Biomarker signatures associated with taxane-induced neuropathic pain will be developed to: 1) identify patients at risk for developing debilitating taxane neuropathic pain before chemotherapy is initiated; and 2) to identify patients already on treatment who are at risk of developing neuropathic pain and need dosing adjustments to prevent CIPNP symptoms. This biomarker signature will be used to detect CIPNP-susceptible patients early and personalize their taxane therapy to minimize CIPNP while optimizing the therapeutic taxane dosing.

1R01NS118504-01
Targeting GPCRs in Amygdalar and Cortical Neural Ensembles to Treat Pain Aversion Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIV OF NORTH CAROLINA CHAPEL HILL SCHERRER, GREGORY Chapel Hill, NC 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

There is a distinct neural ensemble in the brain that encodes the negative affective valence of pain. This project will identify novel targets to treat pain by determining the molecular identity of these BLA nociceptive cells via in situ hybridization and single cell RNAsequencing (scRNA-seq). Resolving the molecular identity of these ACC nociceptive cells will also reveal new targets to treat pain affect. To achieve these results the project will catalog candidate Gi/o-GPCR targets in BLA and ACC, test their utility to treat pain, and verify these new targets have no effect in the brain?s reward and breathing circuitry. The experiments in this project will also evaluate each target for abuse potential and effects on breathing by using behavioral assays for reward processing and whole-body plethysmography, respectively. To evaluate whether our results in rodents are likely to translate clinically, there will be an analysis of expression patterns of these drug targets in human tissue using in situ hybridization.

1R61NS118651-01A1
Prognostic Biomarkers for High-Impact Chronic Pain: Development and Validation Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS STANFORD UNIVERSITY MACKEY, SEAN C Redwood City, CA 2020
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

Multidisciplinary chronic pain treatments show incomplete recovery at the population level because of significant heterogeneity on the individual level in the high impact chronic pain population. Subgroups of individuals either completely respond, do not change, or even worsen following pain management. Therefore, diagnostic biomarker signatures are needed to differentiate high impact chronic pain from low impact chronic pain. This study aims to develop prognostic biomarkers to predict the disease trajectory for individuals with musculoskeletal high-impact chronic pain. These biomarker signatures will integrate central nervous system (CNS), multi-?omic?, sensory, functional, psychosocial, and demographic domains into detection algorithms. Biomarker signatures from the proposed research are intended to facilitate risk and treatment stratification for clinical trial design and to facilitate treatment decisions in clinical practice for patients with musculoskeletal chronic pain.

3R01AT010773-02S1
Minor Cannabinoids and Terpenes: Preclinical Evaluation as Analgesics Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NCCIH RESEARCH TRIANGLE INSTITUTE WILEY, JENNY L. Research Triangle Park, NC 2020
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008
Summary:

G-protein coupled receptor 3 (GPR3) is an orphan receptor present in the central nervous system (CNS) that plays important role in many normal physiological functions and is involved in a variety of pathological conditions. Although the brain chemical that activates this receptor has not been identified, work with GPR3 knockout mice has identified GPR3 as a novel drug target for several Central Nervous System (CNS) mediated diseases including neuropathic pain. However, despite the emerging behavioral implications of the GPR3 system, little is known about how GPR3 affects behavior due to the lack of potent and selective chemical probes that allow scientists to examine functioning of the receptor. Recently, two cannabinoid chemicals present in the cannabis plant were discovered as affecting GPR3. This study will modify the chemical structure of these compounds to increase their potency and selectivity so that they may be used as pharmacological tools to investigate the role of GPR3 in modulating pain. In addition, this project focuses on identifying new compounds that show promise for development into therapeutics for the treatment of pain.

1R01NS116704-01
Validation of Fibroblast-Derived PI16 as a Novel Target for pain Treatment Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TX MD ANDERSON CAN CTR KAVELAARS, ANNEMIEKE; HEIJNEN, COBI J Houston, TX 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

This project aims to validate Peptidase Inhibitor 16 (PI16) as a novel target for the treatment of chronic pain using mouse models and tissues of human patients with neuropathy. PI16 was identified as a novel regulator of chronic pain in preclinical bench studies. PI16 is a small molecule that has not been studied in the context of pain. Mice that are deficient for PI16 function are protected against mechanical allodynia (tactile pain from light touch) in spared nerve injury (SNI) and paclitaxel models of neuropathic pain. PI16 is only detectable in fibroblasts around peripheral nerves (perineurium), and in the meninges of dorsal root ganglia (DRG), spinal cord, and brain, but not in neurons, glia or leukocytes. PI16 levels in perineurial and DRG meningeal fibroblasts increase during neuropathic pain. Increased PI16 secretion by DRG meningeal and perineurial fibroblasts may promote chronic pain by increasing blood nerve barrier (BNB) permeability and leukocyte trafficking into nerve and DRG.

1RF1AG068997-01
Subchondral Bone Cavities in Osteoarthritis Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS JOHNS HOPKINS UNIVERSITY CAO, XU; GUAN, YUN Baltimore, MD 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

A key marker of inflammation in Osteoarthritis (OA) is accompanied by significantly increased sensory innervation within the diseased joint. This study aims to validate the hypothesis that defective bone resorbing cells are responsible for the enlarged bone cavity, giving rise to the inflammatory marker causing further increases in levels sensory innervation and resulting in increased OA pain perception.

3R01AT010757-02S1
The study of Gpr149 in nociception and the peripheral action of minor cannabinoids Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NCCIH UNIVERSITY OF CALIFORNIA, SAN FRANCISCO HELLMAN, JUDITH San Francisco, CA 2020
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008
Summary:

The cannabis plant contains many active compounds known collectively as cannabinoids that have been shown to possess analgesic and anti-inflammatory properties. These compounds exert their biological activity, in part, through the cannabinoid receptor. The cannabinoid receptor is a member of a class of proteins known as G-protein coupled receptors (GPCRs). This study will test whether a GPCR with unknown biological function, called Gpr149, has a role in the activity of cannabinoids. The study will identify and characterize Gpr149 expression in mouse cells, and deeply characterize the action of minor cannabinoids, endocannabinoids and products of inflammation to modulate Gpr149. This research will provide insight into the analgesic and anti-inflammatory action of minor cannabinoids and into the role of Gpr149 in nociception and the sensitization of nociceptors to inflammatory mediators.

3UH3NS113661-02S1
Deep Brain Stimulation of the Subgenual Cingulate Cortex for the Treatment of Medically Refractory Chronic Low Back Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS UNIVERSITY OF CALIFORNIA LOS ANGELES BARI, AUSAF; POURATIAN, NADER Los Angeles, CA 2020
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-18-906 Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-023
Summary:

A current obstacle to developing more effective therapies for chronic low back pain is the lack of clinical trials assessing the feasibility and potential effectiveness of promising new targets for neuromodulation. This project will explore the feasibility of using deep brain stimulation of a new brain target for treating chronic low back pain. The study will also explore imaging biomarkers in patients with chronic low back pain that can be used to predict whether someone is a candidate or may respond to deep brain stimulation therapy, to guide programming and patient selection for this therapy in the future.