Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Location(s) Year Awarded
1R01CA249939-01
Identification of Novel Targets for the Treatment of Chemotherapy-Induced Painful Peripheral Neuropathy Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF MARYLAND BALTIMORE MELEMEDJIAN, OHANNES KEVORK Baltimore, MD 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Chemotherapy-induced painful peripheral neuropathy (CIPN) is the most common toxicity associated with widely used chemotherapeutics. CIPN accounts for significant dose reductions and/or discontinuation of these life-saving treatments. Unfortunately CIPN can also persist in cancer-survivors, adversely affecting their quality of life. CIPN is not well-managed with existing pain therapeutics. Recent preliminary findings suggest that the transcription factor hypoxia-inducible factor alpha (HIF1A) is the target for the chemotherapeutic bortezomib, a proteasome inhibitor. This project will test the hypothesis that bortezomib chemotherapy-induced expression of HIF1A, PDHK1 and LDHA constitute an altered metabolic state known as aerobic glycolysis (AG) that leads to the initiation and maintenance of peripheral neuropathy and pain using a novel tumor-bearing animal model of CIPN. This project aims to validate HIF1A as a therapeutic target for the prevention of CIPN, as well as validate PDHK1 and LDHA as non-opioid therapeutic targets for chronic or established CIPN in animal models.

1UH3NS115647-01A1
A Double-Blind, Randomized, Controlled Trial of Epidural Conus Medullaris Stimulation to Alleviate Pain and Augment Rehabilitation in Patients with Subacute Thoracic Spinal Cord Injury (SCI) Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS DUKE UNIVERSITY LAD, SHIVANAND P Durham, NC 2020
NOFO Title: HEAL Initiative: Clinical Devices to Treat Pain (UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-19-018
Summary:

Pain is a major problem for spinal cord injury (SCI) patients that tends to persist and even worsen with time. No treatments are currently available to consistently relieve pain in SCI patients. This study will investigate the feasibility of Epidural Electrical Stimulation (EES) using the Abbott Proclaim? SCS system with two electrodes to treat neuropathic pain in patients with thoracic spinal cord injury. In this double-blind, prospective, randomized clinical trial, patients with subacute, traumatic, complete thoracic SCIs with American Spinal Injury Association (ASIA) Impairment Scale A will be randomized to receive either ?EES on? (treatment intervention) or ?EES off? (control intervention) of the target regions for pain control (lead overlying the spinal cord anatomy corresponding with their pain distribution) and neurorestoration (lead overlying the conus medullaris) as an adjunct to physical therapy. This study will help determine whether EES can help patients with SCI neuropathic pain and have more widespread clinical applicability.

3U44NS115692-01S1
Development and Optimization of MNK Inhibitors for the Treatment of Neuropathic Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS 4E THERAPEUTICS INC. SAHN, JAMES JEFFREY Austin, TX 2020
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008
Summary:

There is an urgent unmet need for more efficacious analgesics that act via a non-opioid pathway. Mitogen Activated Protein Kinase-interacting kinase 2 (MNK2) is an enzyme that has been implicated in pain signaling, and there is compelling evidence that inhibiting MNK2 has significant pain-reducing effects with few side-effects. Since MNK2 selective inhibitors have not yet been identified, selective inhibition of MNK2 with a small molecule has not been possible. The development of such compounds will enable studies that will illuminate key differences between MNK2 and MNK1. More importantly, from a therapeutic standpoint, highly selective MNK2 inhibitors may prove to have enhanced efficacy and a more favorable side-effect profile than molecules that inhibit both MNK2 and MNK1. This project will support the design and synthesis of at least one MNK2 inhibitor, with >100-fold selectivity over MNK1, that may be developed into a lead compound for treating neuropathic pain.

1R01NS117340-01
B Lymphocyte-Mediated Autoimmunity in Pain After Trauma Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS PALO ALTO VETERANS INSTIT FOR RESEARCH CLARK, DAVID J Palo Alto, CA 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

A major recent advancement for the field of pain research is the recognition of immune system dysregulation as a contributor to the most serious adverse consequences of pain from injury. Accumulating data from clinical and laboratory studies place the activation of B lymphocytes at the center of much of this work, particularly with respect to chronic pain and disability-related outcomes. Validation of this B cell hypothesis could lead directly to trials testing the efficacy of novel or existing immunomodulating agents on posttraumatic pain. To achieve these goals a well-validated core mouse model of limb fracture will be employed with additional studies to be conducted in incisional and nerve injury models to broaden the assessment of B cell mediated effects on pain. Age and sex will be included as variables to enhance rigor.

1R01NS116694-01
Validation of Spinal Neurotensin Receptor 2 as an Analgesic Target Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF ARIZONA PATWARDHAN, AMOL M Tuscon, AZ 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Epidural/spinal administration of analgesics such as opioids, ziconotide and local anesthetics have profound efficacy in some of the most intractable pain conditions such as severe neuropathic pain after failed back surgery, cancer pain and post-operative pain after major abdominal/thoracic surgeries. Contulakin G (CGX) is a snail venom derived peptide that has homology with mammalian neurotensin and was shown to be safe in humans in preliminary studies. A small pilot study demonstrated CGX?s analgesic effect in some patients with spinal cord injury-associated pain. Preliminary findings from mechanistic studies in rodents identified neurotensin receptor 2 (NTSR2) as the mediator for analgesic effects of CGX. This project aims to validate spinal NTSR2 as an analgesic target utilizing three species (rat, mice and human), and two pain models (neuropathic pain and post-surgical pain). The project will utilize pharmacological and gene editing tools such as CRISPR-Cas9 and will include assessment of both sensory and affective measures of pain. A two-site parallel confirmation study is designed based on multisite clinical trials to further authenticate spinal NTSR2 as an analgesic target. Successful completion of this project could lead to the development of a non-opioid spinal analgesic that has high translational potential.

3UG3TR003149-02S1
Supplement to hiPSC-based DRG Tissue Mimics on Multi-well Microelectrode Arrays as a Tissue Chip Model of Acute and Chronic Nociception Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NCATS UNIVERSITY OF TEXAS DALLAS BLACK, BRYAN JAMES Dallas, TX 2020
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008
Summary:

This study aims to determine whether a subset of understudied genes that are expressed in human and mouse dorsal root ganglia (DRG) tissues (critical for relaying the sensation of pain from the body to the central nervous system), are also expressed in human induced pluripotent stem cell DRG mimetics. The study will also determine if these genes are involved in neuronal excitability changes under inflammatory conditions and compare these responses to those of primary DRG neurons. Third and finally, the study will optimize genetic depletion of target genes enabling future fundamental and preclinical research studies.

3R01NS111929-01A1S1
Anatomic, Physiologic and Transcriptomic Mechanisms of Neuropathic Pain in Human DRG Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TX MD ANDERSON CAN CTR DOUGHERTY, PATRICK M Houston, TX 2020
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008
Summary:

Using neural tissues from pain patients, this project will investigate mechanisms of neuronal and/or immune dysfunction driving chronic pain. The researchers will use spatial transcriptomics on human dorsal root ganglion (DRG) and spinal cord tissues to examine the cellular expression profile for these targets using the 10X Genomics Visium technology. The use of tissues from control surgical patients and organ donors as well as surgical patients with neuropathic pain will enable validation of expression of these targets in human tissue as well as indication of their potential involvement in neuropathic pain. This collaborative effort will use DRGs removed from pain-phenotyped patients during neurological surgery, as well as lumbar DRGs and spinal cord from organ donors. This study will map the spatial transcriptomes at approximately single cell resolution in the human DRG and spinal cord.

1R01NS120663-01A1
Genetic and Pharmacological Validation of CRMP2 Phosphorylation as a Novel therapeutic Target for Neuropathic Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF ARIZONA KHANNA, RAJESH Tucson, AZ 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Peripheral nerve injury-induced upregulation of three axonal guidance phosphoproteins correlates with the development of neuropathic pain through an unidentified mechanism: 1) collapsin response mediator protein 2 (CRMP2); 2) the N-type voltage-gated calcium (CaV2.2); 3) the NaV1.7 voltage-gated sodium channel. Injury induced phosphorylated-CRMP2/CaV2.2 and phosphorylated-CRMP2/NaV1.7 upregulation in the sensory pathway may promote abnormal excitatory synaptic transmission in spinal cord that leads to neuropathic pain states. This project will validate CRMP2 phosphorylation as a novel target in neuropathic pain using innovative tools. Examples include a genetic approach (crmp2S522A) in mice as well as a non-opioid pharmacological approach (a novel CRMP2-phsphorylation targeting compound). Demonstrating that inhibition of CRMP2 phosphorylation reverses or prevents neuropathic pain will promote the discovery and validation of a novel therapeutic target (CRMP2-phosphorylation) to facilitate the development of novel pain therapeutics.

1R01DE029074-01A1
Novel Target Identification for Treatment of Chronic Overlapping Pain Using Multimodal Brain Imaging Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF MARYLAND BALTIMORE TRAUB, RICHARD J; MELEMEDJIAN, OHANNES KEVORK Baltimore, MD 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

As many as 64% of patients with Temporomandibular Joint Disorders (TMJDs) report symptoms consistent with Irritable Bowel Syndrome (IBS). However the underlying connection between these comorbid conditions is unclear and treatment options are poor. As such, pain management for these Chronic Overlapping Pain Conditions (COPCs) is a challenge for physicians and patients. This project will determine whether the convergence of pain from different peripheral tissues and perceived stress occurs in the brain and elicits a change in central neural processing of painful stimuli. This project will identify and validate specific lipids, enzymes and metabolic pathways that change expression in the brain during the transition from acute to chronic overlapping pain that can be therapeutically targeted to treat COPCs. Multi-disciplinary approaches will be used to combine brain imaging, visualization of spatial distribution of molecules, genetics, pharmacological and behavioral research techniques.

3R37DA020686-13S1
Role for Tas2Rs in opioid addiction Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDA ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI KENNY, PAUL J. New York, NY 2020
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008
Summary:

Opioids and other addictive substances have powerful rewarding properties that drive the development of addiction. They also have aversive properties that motivate their avoidance and protect against addiction. This project will explore the role of Type 2 Taste Receptor proteins (Tas2Rs or T2Rs) in regulating the aversive properties of opioids, potentially establishing an entirely new class of receptors that can be targeted for the development of novel addiction therapeutics.

3U44NS115111-02S1
High-Resolution, Spinal Cord Stimulation for Non-Opioid Treatment of Neuropathic Pain Preclinical and Translational Research in Pain Management NINDS MICRO-LEADS, INC. MCLAUGHLIN, BRYAN L Somerville, MA 2020
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA18-591
Summary:

This project aims to develop and clinically validate a 64-channel spinal cord stimulation therapy for treating chronic neuropathic pain of the lower extremities, groin, and lower back. With an increased channel count and the ability to precisely target medial and lateral structures of the spinal cord, the system will treat chronic pain with greater efficacy and reduced side effects. This project will pursue a safe, effective, and non-addictive treatment for neuropathic pain through the testing of enhanced HD64 active leads to be manufactured under GMP regulations. The leads will then undergo electrical, mechanical, biocompatibility, and sterilization testing before being tested in a 10-subject early feasibility study.

1R01AR077890-01
Validation of Novel Target for OA Treatment Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF ILLINOIS AT CHICAGO SAMPEN, HEE-JEONG IM; LASCELLES, DUNCAN Chicago, IL 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Osteoarthritis (OA) is the most common form of arthritis and a leading cause of pain and disability. Current challenges of managing OA are that there is no OA disease-modifying drug available, there are few effective treatment strategies, and there is an over-reliance on the use of opioids to manage OA-related joint pain. This project aims to validate vascular endothelial growth factor receptors 1 and 2 (VEGFR 1 receptor = Flt1) and (VEGFR 2 receptor = Flk1) as novel therapeutic targets for OA. This is based on a hypothesis that blocking these two specific receptors of VEGF will inhibit cartilage tissue degeneration and alleviate pain symptoms. This study will test the role of VEGFR-1 and -2 in multiple OA animal models using multiple available VEGF inhibitor molecules. The findings from these studies will develop a rationale for future clinical trials to target VEGFR-1 and -2 for OA patients and develop a novel non-addictive treatment for both joint pain and OA pathology.

1U18EB030607-01
Non-invasive Nonpharmaceutical Treatment for Neck Pain: Development of Cervical Spine-specific MR-guided Focused Ultrasound System Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS UNIVERSITY OF UTAH RIEKE, VIOLA Salt Lake City, UT 2020
NOFO Title: HEAL Initiative: Translational Development of Devices to Treat Pain (U18 Clinical Trial Not Allowed)
NOFO Number: RFA-EB-18-003
Summary:

Neck pain is the fourth leading cause of disability and also a significant cause of cervicogenic headaches. Many of the currently available neck pain treatments are invasive with associated risks and complications, particularly because of the complex anatomy. Magnetic resonance guided focused ultrasound, a novel, completely noninvasive technique, can precisely target spinal facet joints to help ameliorate neck pain, potentially transforming the current practices. The goal of this study is to develop a cervical spine-specific device and demonstrate its safety and efficacy on targeting cervical sensory fibers and the third occipital nerve. The results of these studies will provide an understanding on how to best use this technology for chronic neck pain as well as a basis for translation into human use.

3R01NS113257-01S1
Isolation of GPR160 for biochemical analysis of the activation mechanism and development of a high throughput screening assay to identify small molecule inhibitors Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS SAINT LOUIS UNIVERSITY SALVEMINI, DANIELA Saint Louis, MO 2020
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008
Summary:

Neuropathic pain conditions are difficult to treat, and novel non-narcotic analgesics are desperately needed. The G protein-coupled receptor 160 (GPR160) has emerged as a novel target for analgesic development, as GPR160 in the spinal cord may play a role in the transition from acute to chronic pain. Cocaine- and Amphetamine-Regulated transcript peptide (CARTp) was identified as a ligand for GPR160. Blocking endogenous CARTp signaling in the spinal cord attenuates neuropathic pain, whereas intrathecal injection of CARTp evokes painful hypersensitivity in rodents through GPR160-dependent extracellular signal-regulated kinase (ERK) and cyclic AMP response element-binding pathways (CREB). This project will isolate and biochemically characterize GPR160 and establish methods for biochemical characterization of GPR160 interaction with CARTp activator. Researchers will miniaturize and optimize biochemical assay and scale up protein production for future high throughput biochemical screening to identify potent inhibitors of GPR160 activation. These studies are critical for defining the molecular mechanism of CARTp/GPR160 interactions and initiating large-scale screens for new inhibitors to develop novel therapeutics.

1R01DE029951-01
Targeting Endosomal Receptors for Treatment of Chronic Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS COLUMBIA UNIVERSITY HEALTH SCIENCES BUNNETT, NIGEL W; SCHMIDT, BRIAN L New York, NY 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Many non-opioid drugs target G Protein-Coupled Receptors (GPCRs), a family of proteins involved in many pathophysiological processes including pain, fail during clinical trials for unknown reasons. A recent study found GPCRs not only function at the surface of nerve cells but also within a cell compartment called the endosome, where their sustained activity drives pain. This study will build upon this finding and test whether the clinical failure of drugs targeting plasma membrane GPCRs is related to their inability to target and engage endomsomal GPCRs (eGPCRs). This study will use stimulus-responsive nanoparticles (NP) to encapsulate non-opioid drugs and selectively target eGPCR dyads to investigate how eGCPRs generate and regulate sustained pain signals in neuronal subcellular compartments. This study will also validate eGCPRs as therapeutic targets for treatment of chronic inflammatory, neuropathic and cancer pain. Using NPs to deliver non-opioid drugs, individually or in combinations, directly into specific compartments in nerve cells could be a potential strategy for new pain therapies.

1R01NS116759-01
Validating ASCT2 for the Treatment of Chronic Postsurgical Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF MARYLAND BALTIMORE MELEMEDJIAN, OHANNES KEVORK Baltimore, MD 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Pain associated with surgery is experienced by millions of patients every year. Although post-surgical pain usually resolves as the surgical site heals, up to half of the patients develop chronic pain after surgery. Opioids remain the mainstay treatment for post-surgical pain which are fraught with serious side-effects and abuse liabilities. The endogenous mechanism that leads to the resolution of post-surgical pain remain unclear, specifically the effects of surgery on the metabolism of sensory neurons and how those changes influence the resolution of post-surgical pain are not known. Preliminary findings suggest that surgical trauma suppresses pyruvate oxidation while increased glutamine catabolism was associated with the resolution of post-surgical pain. This project will test the hypothesis that tissue incision and surgery disrupt the expression of the glutamine transporter ASCT2, which then prevents the resolution of post-incisional pain and aims to validate ASCT2 as a therapeutic target. This project will also employ pharmacological, genetic and animal pain model studies test a novel RNA expression-based strategy to enhance ASCT2 expression in DRG sensory neurons and alleviate postoperative pain in animal model systems. Successful completion of this project would validate ASCT2 as a novel endogenous non-opioid and non-addictive mechanism-based target for the resolution of postoperative pain.

3R35NS105092-03S1
The biophysics of skin-neuron sensory tactile organs and their sensitivity to mechanical and chemical stress Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS STANFORD UNIVERSITY GOODMAN, MIRIAM B Palo Alto, CA 2020
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008
Summary:

This project will establish a rapid research pipeline for linking plant-derived compounds to nociception (pain) and to G Protein-Coupled Receptors (GPCRs) and ion channels in the druggable human genome. As more than 80% of these membrane proteins are conserved in the C. elegans nematodes, the study will screen for compounds and genes affecting nociception as well as to identify novel ligand-receptor pairs using this model organism. The study will test which understudied GPCRs and ion channels are involved in nociception as well as attraction or repulsion behaviors. This research has the potential to reveal novel ligand-receptor pairs that could serve as new entry points for improved or alternative pain treatments.

3R01DE029187-01S2
LIGHT and Lymphotoxin targeting for the treatment of chronic orofacial pain conditions Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TEXAS HLTH SCIENCE CENTER AKOPIAN, ARMEN N; RUPAREL, SHIVANI B; TUMANOV, ALEXEI V San Antonio, TX 2020
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-18-906 Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-023
Summary:

Chronic orofacial pain during Temporomandibular Disorders (TMD) and oral cancer is a significant health problem with scarce non-opioid treatment options. This study aims to validate critical regulators of the balance between protective immunity and immunopathology during chronic inflammatory diseases?tumor necrosis factor alpha superfamily members, LIGHT (TNFSF14) and lymphotoxin-beta (LT?) and their receptors, LT?R and Herpes Virus Entry Mediator (HVEM)?as novel therapeutic targets. The study also seeks to determine whether inhibition of LIGHT and LT? signaling prevents the development and inhibits maintenance of chronic TMD and oral cancer pain via peripheral mechanisms involving plasticity of immune, muscle and tumor cells as well as sensory neurons. The study will define the contribution of LIGHT and LT? signaling to TMD-induced excitability of trigeminal sensory neurons innervating the masseter muscle and joint. New validated therapeutic targets for prevention and treatment of orofacial pain that can be peripherally targeted would reduce side effects of current pain medicates related to drug dependence or tolerance.

1R01NS118563-01A1
FKBP51 Antagonism to Prevent Chronic Pain: Optimizing Efficacy & Evaluating Safety and Mechanisms Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIV OF NORTH CAROLINA CHAPEL HILL LINNSTAEDT, SARAH ; MCLEAN, SAMUEL A Chapel Hill, NC 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

A substantial proportion of Americans seeking emergency care after traumatic stress exposure (TSE) are at a high risk of chronic pain and opioid use/misuse. Physiologic systems involved in the stress response could possibly play a critical role in the development of chronic pain after TSE. FK506-binding protein 51 (FKBP51) is an intracellular protein known to affect glucocorticoid negative feedback inhibition and component of stress response, provides an important non-opioid therapeutic target for such chronic pain. This project will test the hypothesis that functional inhibition of FKBP51 prevents or reduces enduring stress-induced hyperalgesia in a timing, dose, and duration-dependent manner in animal models of single prolonged stress alone and in combination with surgery. This project will also test if FKBP51 inhibition enhances recovery following TSE via reduction in pro-inflammatory responses in peripheral and central tissues. It will also test whether FKBP51 inhibition effects cardiotoxicity or addiction. Completion of these studies will increase understanding of FKBP51 as a novel therapeutic target for the prevention of chronic pain and opioid use/misuse resulting from TSE.

1UG3NS115108-01A1
Home-based transcutaneous electrical acustimulation for abdominal pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS JOHNS HOPKINS UNIVERSITY CHEN, JIANDE Baltimore, MD 2020
NOFO Title: HEAL Initiative: Translational Devices to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-19-016
Summary:

Currently, there are no adequate therapies for abdominal pain in patients with Irritable Bowel Syndrome (IBS), a gastrointestinal disorder affecting 14-20% of the US population. More than 40% of IBS patients regularly use opioid narcotics. An alternative treatment for IBS that has been shown to be an effective pain management strategy is electroacupuncture. However its drawbacks include infrequent administration, unclear mechanistic understanding, and lack of methodology optimization. This study will use a noninvasive method of transcutaneous electrical acustimulation (TEA) by replacing needles with surface electrodes and testing acupoints that target peripheral nerves. Based on prior mechanistic and clinical studies, two stimulation parameters and effective acupoints will be tested. In the UG3 phase, the TEA device and a cell phone app will be optimized for use in IBS abdominal pain, and an acute clinical study will determine the best stimulation locations and parameters. During the UH3 phase, an early feasibility clinical study will be performed in 160 IBS patients in treating abdominal pain. Participants will self-administer the therapy at home/work and will be randomized across four treatment groups to determine the therapeutic potential of the TEA system.

3R01AR064251-07S1
Osteoarthritis Progression And Sensory Pathway Alterations Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIAMS RUSH UNIVERSITY MEDICAL CENTER MALFAIT, ANNE-MARIE Chicago, IL 2020
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008
Summary:

There is an urgent need for new non-opioid therapeutic agents that treat the pain associated with Osteoarthritis (OA) ? a chronic, progressive disease that leads to pain in weightbearing joints, pain during movement, and pain at rest. This project will refine techniques for targeting several proteins expressed in sensory neurons associated with OA pain, with the goal of testing the potential of these proteins to serve as targets for development of effective, non-opioid painkillers.

1UH3NS113661-01
Deep Brain Stimulation of the Subgenual Cingulate Cortex for the Treatment of Medically Refractory Chronic Low Back Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS UNIVERSITY OF CALIFORNIA LOS ANGELES BARI, AUSAF (contact); POURATIAN, NADER Los Angeles, CA 2019
NOFO Title: HEAL Initiative: Clinical Devices to Treat Pain (UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-19-018
Summary:

This study aims to address critical gaps and unmet therapeutic needs of chronic low back pain (CLBP) patients using a next-generation deep brain stimulation (DBS) device with directional steering capability to engage networks known to mediate the affective component of CLBP. Researchers will utilize patient-specific probabilistic tractography to target the subgenual cingulate cortex (SCC) to engage the major fiber pathways mediating the affective component of chronic pain. The objective is to conduct an exploratory first-in-human clinical trial of SCC DBS for treatment of medically refractory CLBP. The research team aims to: (1) assess the preliminary efficacy of DBS of SCC in treatment of medically refractory CLBP; (2) demonstrate the safety and feasibility of SCC DBS for CLBP; and (3) develop diffusion tensor imaging–based blueprints of response to SCC DBS for CLBP.

5R01DE027454-02
Modeling temporomandibular joint disorders pain: role of transient receptor potential ion channels Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDCR Duke University Chen, Yong Durham, NC 2019
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

Masticatory and spontaneous pain associated with temporomandibular joint disorders (TMJD) is a significant contributor to orofacial pain, and current treatments for TMJD pain are unsatisfactory. Pain-related transient receptor potential (TRP) channels, expressed by trigeminal ganglion (TG) sensory neurons, have been implicated in both acute and chronic pain and represent possible targets for anti-pain strategies. Using bite force metrics, we found TMJ inflammation-induced masticatory pain to be significantly, but not fully, reversed in Trpv4 knockout mice, suggesting the residual pain might be mediated by other pain-TRPs. Our gene expression studies demonstrated that TRPV1 and TRPA1 were up-regulated in the TG in response to TMJ inflammation in a Trpv4-dependent manner. We hypothesize that TRPV1 and TRPA1, like TRPV4, contribute to TMJ pain. Our specific aims will examine the contribution of TRPV1, TRPV4, and TRPA1 to pathogenesis of TMJD pathologic pain including assessment of the role of neurogenic inflammation.

1RF1NS113883-01
Sympathetic-mediated sensory neuron cluster firing as a novel therapeutic target for neuropathic pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS JOHNS HOPKINS UNIVERSITY DONG, XINZHONG Baltimore, MD 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

An important component of neuropathic pain is spontaneous or ongoing pain, such as burning pain or intermittent paroxysms of sharp and shooting pain, which may result from abnormal spontaneous activity in sensory nerves. However, due to technical limitations, spontaneous activity in sensory neurons in vivo has not been well studied. Using in vivo imaging in genetically-modified mice, preliminary findings identified spontaneously-firing clusters of neurons formed within the dorsal root ganglia (DRG) after traumatic nerve injury that exhibits increased spontaneous pain behaviors. Furthermore, preliminary evidence has been collected that cluster firing may be related to abnormal sympathetic sprouting in the sensory ganglia. This project will test the hypothesis that cluster firing is triggered by abnormal sympathetic inputs to sensory neurons, and that it underpins spontaneous paroxysmal pain in neuropathic pain models. Findings from this project will identify potential novel therapeutic targets for the treatment of neuropathic pain.

3U19TW008163-10S1
DIVERSE DRUG LEAD COMPOUNDS FROM BACTERIAL SYMBIONTS IN PHILIPPINE MOLLUSKS Preclinical and Translational Research in Pain Management FIC UNIVERSITY OF UTAH HAYGOOD, MARGO GENEVIEVE Salt Lake City, UT 2018
NOFO Title: Limited Competition: International Cooperative Biodiversity Groups (U19)
NOFO Number: RFA-TW-13-001
Summary:

The Philippine Mollusk Symbiont International Cooperative Biodiversity Group harnesses the vast biodiversity of the Philippines to discover new drugs to treat bacterial infections, parasitic infections, pain, and other neurological conditions and cancer, all of which are serious health problems in both the Philippines and the United States. The Republic of the Philippines represents a unique nexus of exceptional biodiversity, dense human population with pressing societal needs, consequent urgent need for conservation, and government commitment to education and technology to harness national human and natural resources for a sustainable future. Mollusks are one of the most diverse groups of marine animals, and their associated bacteria represent an unexplored trove of chemical diversity. Researchers will use an increasing understanding of the interactions between mollusk symbionts and their hosts to discover the most novel and useful molecules. The project will document and describe Philippine mollusk biodiversity and support training and infrastructure that provide the foundation for conservation of Philippine biodiversity.