Funded Projects

Explore our currently funded projects. You may search with all three fields, then focus your results by applying any of the dropdown filters. After customizing your search, you may download results and even save your specific search for later.

Project # Project Title Research Focus Area Research Program Administering IC Institution(s) Investigator(s) Sort descending Location(s) Year Awarded
1UG3NS115637-01
Clinical Translation of Ultrasonic Ketamine Uncaging for Non-Opioid Therapy of Chronic Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS STANFORD UNIVERSITY AIRAN, RAAG D (contact); WILLIAMS, NOLAN R Stanford, CA 2019
NOFO Title: HEAL Initiative: Translational Devices to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-19-016
Summary:

The research team has developed ultrasonic drug uncaging for neuroscience, in which neuromodulatory agents are uncaged from ultrasound-sensitive biocompatible and biodegradable drug-loaded nanocarriers. This project will clinically translate ultrasonic ketamine uncaging for chronic pain therapy. In the UG3 phase, the research team will scale our nanoparticle production processes to human scales and adapt them to pharmaceutical standards. In the UH3 phase, they will complete a first-in-human evaluation of the safety and efficacy of ultrasonic ketamine uncaging by quantifying how much ketamine is released relative to the ultrasound dose and assessing whether the uncaged ketamine can modulate the sensitivity and affective response to pain, in patients suffering from chronic osteoarthritic pain. This project aims to yield a novel, noninvasive, non-opioid therapy for chronic pain that maximizes the therapeutic efficacy of ketamine over its side effects, by targeting its action to a critical hub of pain processing.

1RF1NS130481-01
Immune Modulating Therapies to Treat Complex Regional Pain Syndrome Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS DREXEL UNIVERSITY AJIT, SEENA Philadelphia, PA 2022
NOFO Title: HEAL Initiative: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: NS22-034
Summary:

Complex regional pain syndrome is a difficult-to-treat chronic condition that causes excess and prolonged pain and inflammation after injury to an arm or leg and includes damage to skin of affected limbs. Although it is known that aberrant immune system function plays a role in this condition, the details remain unclear about how this occurs – in particular, through the adaptive immune system that relies on specialized immune cells and antibodies to protect the body from harm.  This project will study the role of certain immune cells (T cells) that circulate throughout the body or reside in bone using both rat or human bone samples from patients with complex regional pain syndrome.

1R01DE029187-01
LIGHT and Lymphotoxin targeting for the treatment of chronic orofacial pain conditions Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDCR UNIVERSITY OF TEXAS HLTH SCIENCE CENTER AKOPIAN, ARMEN N San Antonio, TX 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Mismanagement of orofacial chronic pain, such as temporomandibular joint and muscle disorders (TMJD) and oral cancer, substantially contributes to opioid overuse; overdose-related deaths; and cardiovascular, renal, and neurological complications at epidemic proportions. The current paradigm implies that orofacial conditions could trigger maladaptation of the immune system and plasticity supporting persistent inflammation, which influences the development and maintenance of orofacial chronic pain. LIGHT (TNFSF14) and Lymphotoxin-beta (LT?), members of the tumor necrosis factor superfamily, provide a balance between protective immunity and immunopathology during chronic inflammatory diseases. This project will test the hypothesis that targeting LIGHT and LT? signaling could prevent the development and inhibit the maintenance of chronic pain produced by TMJD and oral cancer, via peripheral mechanisms involving plasticity of immune, stromal, and tumor cells, as well as sensory neurons. The proposed research is significant as it advances our understanding of mechanisms regulating the development and maintenance of orofacial pain and offers new therapeutic targets and an immunotherapeutic approach for preventing and blocking chronic pain during TMJD and oral cancer.

1UC2AR082195-01
Comprehensive Functional Phenotyping of Trigeminal Neurons Innervating Temporomandibular Joint (TMJ) Tissues in Male, Female and Aged Mice, Primates, and Humans With and Without TMJ Disorders (TMJD) Preclinical and Translational Research in Pain Management Restoring Joint Health and Function to Reduce Pain (RE-JOIN) NIAMS UNIVERSITY OF TEXAS HLTH SCIENCE CENTER AKOPIAN, ARMEN N; BOADA, MARIO DANILO; ERNBERG, MALIN; MACPHERSON, LINDSEY J San Antonio, TX 2022
NOFO Title: HEAL Initiative: Restoring Joint Health and Function to Reduce Pain Consortium (RE-JOIN) (UC2 Clinical Trial Not Allowed)
NOFO Number: RFA-AR-22-009
Summary:

Scientists do not know the details of how the nervous system interacts with the temporomandibular joint (TMJ) that connects the lower jaw with the skull. This project aims to comprehensively explain the functions, types, neuroanatomical distributions, and adaptability (plasticity) of specific nerve cells in the brain (trigeminal neurons) that connect with the TMJ. The research will analyze nerve-TMJ connections associated with chewing muscles and other structures that form the TMJ such as cartilage and ligaments. The project will analyze samples from both sexes of aged mice, primates, and humans with and without painful TMJ disorders. This research aims to uncover potential treatment and prevention targets for managing TMJ pain.

3R01DE029187-01S2
LIGHT and Lymphotoxin targeting for the treatment of chronic orofacial pain conditions Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF TEXAS HLTH SCIENCE CENTER AKOPIAN, ARMEN N; RUPAREL, SHIVANI B; TUMANOV, ALEXEI V San Antonio, TX 2020
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-18-906 Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-023
Summary:

Chronic orofacial pain during Temporomandibular Disorders (TMD) and oral cancer is a significant health problem with scarce non-opioid treatment options. This study aims to validate critical regulators of the balance between protective immunity and immunopathology during chronic inflammatory diseases?tumor necrosis factor alpha superfamily members, LIGHT (TNFSF14) and lymphotoxin-beta (LT?) and their receptors, LT?R and Herpes Virus Entry Mediator (HVEM)?as novel therapeutic targets. The study also seeks to determine whether inhibition of LIGHT and LT? signaling prevents the development and inhibits maintenance of chronic TMD and oral cancer pain via peripheral mechanisms involving plasticity of immune, muscle and tumor cells as well as sensory neurons. The study will define the contribution of LIGHT and LT? signaling to TMD-induced excitability of trigeminal sensory neurons innervating the masseter muscle and joint. New validated therapeutic targets for prevention and treatment of orofacial pain that can be peripherally targeted would reduce side effects of current pain medicates related to drug dependence or tolerance.

1UC2AR082196-01
Innervation of the Knee and TMJ  Preclinical and Translational Research in Pain Management Restoring Joint Health and Function to Reduce Pain (RE-JOIN) NIAMS UNIVERSITY OF FLORIDA ALLEN, KYLE D (contact); ALMARZA, ALEJANDRO JOSE; CAUDLE, ROBERT M Gainesville, FL 2022
NOFO Title: HEAL Initiative: Restoring Joint Health and Function to Reduce Pain Consortium (RE-JOIN) (UC2 Clinical Trial Not Allowed)
NOFO Number: RFA-AR-22-009
Summary:

A complex network of different nerve cell subtypes connects to joints in different ways throughout body regions, such as the knee and the temporomandibular joint (TMJ) that connects the lower jaw and skull. This project aims to identify disease-specific pain symptoms using clinically relevant rat models of TMJ and knee osteoarthritis – and compare findings with disease-specific pain symptoms in human patients with the same conditions. This research may lead to a better understanding of how different nerve cell subtypes contribute to joint pain as well as how these nerve cell subtypes change with age and disease.

1UH3NS113661-01
Deep Brain Stimulation of the Subgenual Cingulate Cortex for the Treatment of Medically Refractory Chronic Low Back Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS UNIVERSITY OF CALIFORNIA LOS ANGELES BARI, AUSAF (contact); POURATIAN, NADER Los Angeles, CA 2019
NOFO Title: HEAL Initiative: Clinical Devices to Treat Pain (UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-19-018
Summary:

This study aims to address critical gaps and unmet therapeutic needs of chronic low back pain (CLBP) patients using a next-generation deep brain stimulation (DBS) device with directional steering capability to engage networks known to mediate the affective component of CLBP. Researchers will utilize patient-specific probabilistic tractography to target the subgenual cingulate cortex (SCC) to engage the major fiber pathways mediating the affective component of chronic pain. The objective is to conduct an exploratory first-in-human clinical trial of SCC DBS for treatment of medically refractory CLBP. The research team aims to: (1) assess the preliminary efficacy of DBS of SCC in treatment of medically refractory CLBP; (2) demonstrate the safety and feasibility of SCC DBS for CLBP; and (3) develop diffusion tensor imaging–based blueprints of response to SCC DBS for CLBP.

3UH3NS113661-02S1
Deep Brain Stimulation of the Subgenual Cingulate Cortex for the Treatment of Medically Refractory Chronic Low Back Pain Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS UNIVERSITY OF CALIFORNIA LOS ANGELES BARI, AUSAF; POURATIAN, NADER Los Angeles, CA 2020
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-18-906 Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-023
Summary:

A current obstacle to developing more effective therapies for chronic low back pain is the lack of clinical trials assessing the feasibility and potential effectiveness of promising new targets for neuromodulation. This project will explore the feasibility of using deep brain stimulation of a new brain target for treating chronic low back pain. The study will also explore imaging biomarkers in patients with chronic low back pain that can be used to predict whether someone is a candidate or may respond to deep brain stimulation therapy, to guide programming and patient selection for this therapy in the future.

1R01DK134989-01
Signal Integration by Specialized Mesenchyme in Urothelial Homeostasis and Interstitial Cystitis/Bladder Pain Syndrome Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDDK STANFORD UNIVERSITY BEACHY, PHILIP A Redwood City, CA 2022
NOFO Title: HEAL Initiative: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: NS22-034
Summary:

Interstitial cystitis/bladder pain syndrome is a debilitating disease affecting many women. Opioid-based pain management is a common feature of current treatment approaches but is associated with the risk of addiction. The causes of this disorder remain unknown, and no effective treatments are available. This project will provide new insights using genetic, medication-based and other approaches in a mouse model, along with single-cell gene expression studies conducted with cells from mice and human patients who have this condition. The analyses will help provide targeted, safe, and effective treatment approaches for individuals with interstitial cystitis/bladder pain syndrome.

1R01NS113243-01
Targeting sensory ganglia and glial signaling for the treatment of acute and chronic pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS UNIVERSITY OF CINCINNATI BERTA, TEMUGIN Cincinnati, OH 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

There is increasing evidence that satellite glial cells (SGCs) surrounding neurons in the dorsal root ganglia modulate sensory processing and are important for chronic pain. Tissue inhibitor of metalloproteinase 3 (TIMP3) signaling occurs in SGCs and has unique plethoric functions in inhibiting matrix metalloproteinases, the tumor necrosis factor-?-converting enzyme, and the vascular endothelial growth factor receptor 2, all of which have been implicated in inflammation and pain. This study will test the hypothesis that expression of TIMP3 in SGCs is critical for the neuroimmune homeostasis in sensory ganglia, as well as for the development of pain, and therefore could be a novel therapeutic target for acute and chronic pain. Given the expression of TIMP3 in human SGCs and the strong validation of multiple small molecules targeting TIMP3 signaling, including FDA-approved drugs, in various animal models of pain and in cultured human SGCs, the successful completion of this research project has a high likelihood of rapid translation into therapeutic testing in inflammatory pain conditions that are a risk for opioid abuse.

1RF1NS113991-01
Disrupting ion channel scaffolding to treat neuropathic pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS STATE UNIVERSITY OF NEW YORK AT BUFFALO BHATTACHARJEE, ARINDAM Buffalo, NY 2019
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Dorsal root ganglion (DRG) neuronal hyperexcitability is central to the pathology of neuropathic pain and is a target for local anesthetics, even though the efficacy of local anesthetic patches has been mixed. The coordinated movement of ion channels, especially voltage-dependent sodium channels, from intracellular pools to the sites of nerve injury has been suggested to be an underlying cause of electrogenesis and ectopic firing in neuropathic pain conditions. Recent studies identified Magi1 as a scaffold protein responsible for sodium channel targeting and membrane stabilization in DRG neurons. This project will determine whether reducing the expression Magi1 could disrupt intracellular trafficking of sodium channels in DRG neurons under neuropathic injury conditions, and could therefore serve as a potential therapeutic target for neuropathic pain.

1R21DA057500-01
G Alpha Z Subunit as a Potential Therapeutic Target to Modulate Mu Opioid Receptor Pharmacology Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDA UNIVERSITY OF ROCHESTER BIDLACK, JEAN M Rochester, NY 2022
NOFO Title: Emergency Awards: HEAL Initiative-Early-Stage Discovery of New Pain and Opioid Use Disorder Targets Within the Understudied Druggable Proteome (R21 Clinical Trial Not Allowed)
NOFO Number: TR22-011
Summary:

Opioids affect the body by attaching to certain types of receptors that attach to G-proteins (particularly, a subtype called G-alpha). Opioids vary in their ability to provide pain relief as well as in their ability to require more drug to provide a response, known as tolerance. This project will explore the potential of various G-alpha subunits to increase or decrease opioid receptor signaling. The research findings will lay the groundwork for tailoring G-alpha related opioid effects to provide more pain relief while being less addictive.

1R01DK135076-01
PNPase Inhibition as an Effective Treatment for Chronic Bladder Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDDK UNIVERSITY OF PITTSBURGH AT PITTSBURGH BIRDER, LORI A (contact); JACKSON, EDWIN KERRY Pittsburgh, PA 2022
NOFO Title: HEAL Initiative: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: NS22-034
Summary:

Chronic visceral pain disorders, such as interstitial cystitis/bladder pain syndrome, are among the most difficult types of pain to treat. This project will conduct a detailed analysis of an enzyme thought to be involved with the disorder (purine nucleoside phosphorylase, or PNPase) as a target for new nonopioid pain medications to treat interstitial cystitis/bladder pain syndrome. The research will lay the groundwork for developing targeted treatments for visceral pain disorders.

1UG3TR003149-01
hiPSC-based DRG Tissue Mimics on Multi-well Microelectrode Arrays as a Tissue Chip Model of Acute and Chronic Nociception Preclinical and Translational Research in Pain Management Translational Research to Advance Testing of Novel Drugs and Human Cell-Based Screening Platforms to Treat Pain and Opioid Use Disorder NCATS UNIVERSITY OF TEXAS DALLAS BLACK, BRYAN JAMES Dallas, TX 2019
NOFO Title: HEAL Initiative: Tissue Chips to Model Nociception, Addiction, and Overdose (UG3/UH3 Clinical Trial Not Allowed)
NOFO Number: RFA-TR-19-003
Summary:

Researchers will develop an innovative three-dimensional (3D) model of acute and chronic nociception using human induced pluripotent stem cell (hiPSC) sensory neurons and satellite glial cell surrogates. They will develop a tissue chip for modeling acute and chronic nociception based on 3D hiPSC-based dorsal root ganglion tissue mimics and a high-content, moderate-throughput microelectrode array. Researchers will demonstrate stable spontaneous and noxious stimulus-evoked behavior in response to thermal, chemical, and electrical stimulation challenges. They aim to demonstrate sensitivity to translational control via ligand receptor interactions between neuronal and non-neuronal cell types. They also will demonstrate the quantitative efficiency and preclinical efficacy of our system by detecting known ligand-based modulators of translational control and voltage-gated ion channel antagonists in a sensitized model of chronic nociception. Researchers will leverage the high-throughput nature of our tissue chip model to screen Food and Drug Administration–approved bioactive compounds.

3UG3TR003149-02S1
Supplement to hiPSC-based DRG Tissue Mimics on Multi-well Microelectrode Arrays as a Tissue Chip Model of Acute and Chronic Nociception Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NCATS UNIVERSITY OF TEXAS DALLAS BLACK, BRYAN JAMES Dallas, TX 2020
NOFO Title: Notice of Special Interest for HEAL Initiative: Request for Administrative Supplements to Existing Grants for Identification and Validation of New Pain and Opioid Use Disorder Targets within the Understudied Druggable Genome
NOFO Number: NOT-TR-20-008
Summary:

This study aims to determine whether a subset of understudied genes that are expressed in human and mouse dorsal root ganglia (DRG) tissues (critical for relaying the sensation of pain from the body to the central nervous system), are also expressed in human induced pluripotent stem cell DRG mimetics. The study will also determine if these genes are involved in neuronal excitability changes under inflammatory conditions and compare these responses to those of primary DRG neurons. Third and finally, the study will optimize genetic depletion of target genes enabling future fundamental and preclinical research studies.

1R61NS114954-01
The Inflammatory Index as a Biomarker for Pain in Patients with Sickle Cell Disease Preclinical and Translational Research in Pain Management Discovery and Validation of Biomarkers, Endpoints, and Signatures for Pain Conditions NINDS MEDICAL COLLEGE OF WISCONSIN BRANDOW, AMANDA M Milwaukee, WI 2019
NOFO Title: Discovery of Biomarkers, Biomarker Signatures, and Endpoints for Pain (R61/R33 Clinical Trial Optional)
NOFO Number: RFA-NS-18-041
Summary:

Debilitating pain is the most common complication of sickle cell disease (SCD), but there is significant variability in pain expression in these patients. Currently, there is no plasma biomarker that can prognosticate which patients are likely to experience pain. The overall goal of this proposed research is to develop a biomarker that prognosticates the clinical expression of pain in SCD. Project aims are to (1) derive the inflammatory index for pain by identifying inflammatory and immune regulatory gene probe sets that will distinguish healthy controls, patients with SCD in baseline health, and patients with SCD in acute pain and (2) determine whether co-expressed genes from patients with SCD correlate with clinical pain data. Subsequent aims are to (1) determine the clinically meaningful changes of the index in patients with SCD and (2) investigate the preliminary clinical validity of the index as a prognostic biomarker for pain in patients with SCD.

3R01DE029951-01S1
Targeting Endosomal Receptors for Treatment of Chronic Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NIDCR NEW YORK UNIVERSITY BUNNETT, NIGEL W New York, NY 2021
NOFO Title: Notice of Special Interest to Encourage Eligible NIH HEAL Initiative Awardees to Apply for PA-20-222: Research Supplements to Promote Diversity in Health-Related Research (Admin Supp - Clinical Trial Not Allowed)
NOFO Number: NOT-NS-20-107
Summary:

G protein-coupled receptors (GPCRs) are the largest family of transmembrane signaling proteins and play important roles in inflammation and pain. GPCR signaling is fast and temporary, making it hard to measure in clinical studies of potential drugs to interfere with the signaling. This research is using selectively designed nanoparticles to stimulate or block GPCRs toward identifying new treatments for oral cancer pain. This award will use a new nanoformulation approach to understand how nanoparticles affect nerve function by i) testing the effects of continuous release of a GPCR inhibitor in an oral cancer microenvironment and ii) investigating the influence of various physicochemical characteristics of nanoparticles on nerve function in an oral cancer microenvironment.

1R01DE029951-01
Targeting Endosomal Receptors for Treatment of Chronic Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS COLUMBIA UNIVERSITY HEALTH SCIENCES BUNNETT, NIGEL W; SCHMIDT, BRIAN L New York, NY 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

Many non-opioid drugs target G Protein-Coupled Receptors (GPCRs), a family of proteins involved in many pathophysiological processes including pain, fail during clinical trials for unknown reasons. A recent study found GPCRs not only function at the surface of nerve cells but also within a cell compartment called the endosome, where their sustained activity drives pain. This study will build upon this finding and test whether the clinical failure of drugs targeting plasma membrane GPCRs is related to their inability to target and engage endomsomal GPCRs (eGPCRs). This study will use stimulus-responsive nanoparticles (NP) to encapsulate non-opioid drugs and selectively target eGPCR dyads to investigate how eGCPRs generate and regulate sustained pain signals in neuronal subcellular compartments. This study will also validate eGCPRs as therapeutic targets for treatment of chronic inflammatory, neuropathic and cancer pain. Using NPs to deliver non-opioid drugs, individually or in combinations, directly into specific compartments in nerve cells could be a potential strategy for new pain therapies.

1UG3NS123965-01
Novel, non-opioid, non-addictive intrathecal therapy for the treatment of chronic pain Preclinical and Translational Research in Pain Management Development and Optimization of Non-Addictive Therapies to Treat Pain NINDS CENTREXION THERAPEUTICS CORPORATION CAMPBELL, JAMES N Boston, MA 2021
NOFO Title: HEAL Initiative: Non-addictive Analgesic Therapeutics Development [Small Molecules and Biologics] to Treat Pain (UG3/UH3 Clinical Trial Optional)
NOFO Number: RFA-NS-21-010
Summary:

Patients with severe, intractable chronic pain primarily receive treatment with opioids, and non-opioid treatment options are urgently needed. These patients may be candidates for treatment using other types of pain medications administered via intrathecal injection—that is, injection directly into the fluid-filled space between the membranes surrounding the brain and spinal cord. Intrathecal injection requires much lower medication doses than systemic administration. Centrexion Therapeutics Corporation seeks to develop CNTX-3100, a highly selective and highly potent novel small molecule that activates the nociception receptor (NOPr), for intrathecal administration using a pump approved by the U.S. Food and Drug Administration. In animal studies, such NOPr agonists had powerful analgesic effects when delivered directly to the spinal cord by intrathecal administration. CNTX-3100 has ideal properties for intrathecal delivery and in animal studies provided pain relief and a safety profile that was superior to intrathecally administered morphine. This project will scale up the drug, develop a formulation that ensures a stable product for intrathecal delivery, and conduct preclinical toxicity studies to prepare for a Phase 1 clinical trial.

1RF1AG068997-01
Subchondral Bone Cavities in Osteoarthritis Pain Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS JOHNS HOPKINS UNIVERSITY CAO, XU; GUAN, YUN Baltimore, MD 2020
NOFO Title: Discovery and Validation of Novel Targets for Safe and Effective Pain Treatment (R01 Clinical Trial Not Allowed)
NOFO Number: RFA-NS-18-043
Summary:

A key marker of inflammation in Osteoarthritis (OA) is accompanied by significantly increased sensory innervation within the diseased joint. This study aims to validate the hypothesis that defective bone resorbing cells are responsible for the enlarged bone cavity, giving rise to the inflammatory marker causing further increases in levels sensory innervation and resulting in increased OA pain perception.

1R01NS103350-01A1
Regulation of Trigeminal Nociception by TRESK Channels Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS WASHINGTON UNIVERSITY CAO, YUQI St. Louis, MO 2018
NOFO Title: Administrative Supplements for Validation of Novel Non-Addictive Pain Targets (Clinical Trials Not Allowed)
NOFO Number: NOT-NS-18-073
Summary:

TWIK-related spinal cord K+ (TRESK) channel is abundantly expressed in all primary afferent neurons (PANs) in trigeminal ganglion (TG) and dorsal root ganglion (DRG), mediating background K+ currents and controlling the excitability of PANs. TRESK mutations cause migraine headache but not body pain in humans, suggesting that TG neurons are more vulnerable to TRESK dysfunctions. TRESK knock out (KO) mice exhibit more robust behavioral responses than wild-type controls in mouse models of trigeminal pain, especially headache. We will investigate the mechanisms through which TRESK dysfunction differentially affects TG and DRG neurons. Based on our preliminary finding that changes of endogenous TRESK activity correlate with changes of the excitability of TG neurons during estrous cycles in female mice, we will examine whether estrogen increases migraine susceptibility in women through inhibition of TRESK activity in TG neurons. We will test the hypothesis that frequent migraine attacks reduce TG TRESK currents.

3R01NS103350-02S1
REGULATION OF TRIGEMINAL NOCICEPTION BY TRESK CHANNELS Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS WASHINGTON UNIVERSITY CAO, YUQING SAINT LOUIS, MO 2019
NOFO Title: Administrative Supplements to Existing NIH Grants and Cooperative Agreements (Parent Admin Supp Clinical Trial Optional)
NOFO Number: PA-18-591
Summary:

TWIK-related spinal cord K+ (TRESK) channel is abundantly expressed in all primary afferent neurons (PANs) in trigeminal ganglion (TG) and dorsal root ganglion (DRG), mediating background K+ currents and controlling the excitability of PANs. TRESK mutations cause migraine headache but not body pain in humans, suggesting that TG neurons are more vulnerable to TRESK dysfunctions. TRESK knock out (KO) mice exhibit more robust behavioral responses than wild-type controls in mouse models of trigeminal pain, especially headache. We will investigate the mechanisms through which TRESK dysfunction differentially affects TG and DRG neurons. Based on our preliminary finding that changes of endogenous TRESK activity correlate with changes of the excitability of TG neurons during estrous cycles in female mice, we will examine whether estrogen increases migraine susceptibility in women through inhibition of TRESK activity in TG neurons. We will test the hypothesis that frequent migraine attacks reduce TG TRESK currents.

1R21NS132565-01
Discovery of the Novel Targets for Post-Traumatic Headache Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NINDS WASHINGTON UNIVERSITY CAO, YUQING Saint Louis, MO 2023
NOFO Title: Emergency Awards: HEAL Initiative-Early-Stage Discovery of New Pain and Opioid Use Disorder Targets Within the Understudied Druggable Proteome (R21 Clinical Trial Not Allowed)
NOFO Number: RFA-TR-22-011
Summary:

Chronic post-traumatic headache (PTH) is highly debilitating, poorly understood, and difficult to treat. This project aims to identify proteins located in the membrane of certain neurons that are critical for the development, maintenance, and/or resolution of PTH. These proteins may be targets for novel treatment approaches that are nonaddictive and have minimal side effects.

1R21TR004333-01
Discovery of Novel Openers of the Understudied Human Drug Target Kir6.1 Preclinical and Translational Research in Pain Management Discovery and Validation of Novel Targets for Safe and Effective Treatment of Pain NCATS NEW YORK UNIVERSITY SCHOOL OF MEDICINE CARDOZO, TIMOTHY J New York, NY 2022
NOFO Title: Emergency Awards: HEAL Initiative-Early-Stage Discovery of New Pain and Opioid Use Disorder Targets Within the Understudied Druggable Proteome (R21 Clinical Trial Not Allowed)
NOFO Number: TR22-011
Summary:

Routine treatment of pain with prescription opioid medications may evolve into opioid use disorder, addiction, and potentially overdose. New, non-opioid molecular targets for pain are needed as a key element of responding to the opioid and overdose crisis. Ion channels are molecular gateways that convert electrical signals into physiological responses, and many have been implicated in transmitting pain signals. The ion channel Kir6.1/KCNJ8 has been linked to the control of postoperative and cancer pain. Studies in animal models show that low levels of this ion channel are evident after an injury. This research will identify compounds that can open the Kir6.1/KCNJ8 channel as potential treatment strategy for pain.

1UG3NS135551-01
Translating an MR-guided focused ultrasound system for first-in-human precision neuromodulation of pain circuits Preclinical and Translational Research in Pain Management Translating Discoveries into Effective Devices to Treat Pain NINDS VANDERBILT UNIVERSITY MEDICAL CENTER CASKEY, CHARLES F (contact); CHEN, LI MIN Nashville, TN 2023
NOFO Title: Blueprint MedTech Translator (UG3/UH3 - Clinical Trial Optional)
NOFO Number: PAR-21-315